Results 51 to 60 of about 7,018 (204)
ABSTRACT This paper investigates the generalized Hyers–Ulam stability of the Laplace equation subject to Neumann boundary conditions in the upper half‐space. Traditionally, Hyers–Ulam stability problems for differential equations are analyzed by examining the system's error, particularly in relation to a forcing term.
Dongseung Kang +2 more
wiley +1 more source
Ulam stability of linear differential equations using Fourier transform
The purpose of this paper is to study the Hyers-Ulam stability and generalized HyersUlam stability of general linear differential equations of nth order with constant coefficients by using the Fourier transform method.
Murali Ramdoss +2 more
doaj +1 more source
A thermostat model described by a second-order fractional difference equation is proposed in this paper with one sensor and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality.
Jehad Alzabut +5 more
doaj +1 more source
Approximate Homomorphisms of Ternary Semigroups
A mapping $f:(G_1,[ ]_1)\to (G_2,[ ]_2)$ between ternary semigroups will be called a ternary homomorphism if $f([xyz]_1)=[f(x)f(y)f(z)]_2$. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into ...
A. Cayley +22 more
core +2 more sources
ABSTRACT This paper proposes a novel extension of the classical cobweb price model by incorporating behavioral inventory responses through an anticipatory mini‐storage mechanism. In many real‐world commodity markets, persistent price oscillations occur even when classical stability conditions are theoretically satisfied, an inconsistency traditional ...
M. Anokye +6 more
wiley +1 more source
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja +3 more
wiley +1 more source
On the Orthogonal Stability of the Pexiderized Quadratic Equation
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J. +12 more
core +2 more sources
Generalized Hyers-Ulam Stability of the Additive Functional Equation
We will prove the generalized Hyers–Ulam stability and the hyperstability of the additive functional equation f(x1 + y1, x2 + y2, …, xn + yn) = f(x1, x2, … xn) + f(y1, y2, …, yn).
Yang-Hi Lee, G. Kim
semanticscholar +1 more source
Smart malaria control using larvicidal plant extracts and mosquito nets. With the model, sensor nodes can be installed to collect environmental data that enhances the breeding of mosquitoes and the timing of malaria‐treated mosquito nets. Data collected can be processed using artificial intelligence for decision‐ and policy‐making.
Juliet Onyinye Nwigwe +6 more
wiley +1 more source
Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb +2 more
core

