Results 61 to 70 of about 2,495 (216)

Hyers-Ulam-Rassias stability of a generalized Pexider functional equation

open access: yesBanach Journal of Mathematical Analysis, 2007
In this interesting paper, the authors investigate the generalized Hyers-Ulam stability for a functional equation of Pexider type on groups.
Charifi, Ahmed   +2 more
openaire   +3 more sources

On the Generalized Hyers-Ulam-Rassias Stability of Higher Ring Derivations [PDF]

open access: yesKyungpook mathematical journal, 2009
Let \({\mathcal A}\), \({\mathcal B}\) be real or complex algebras. A sequence \(H=\{h_0,h_1,\dots\}\) of additive operators from \({\mathcal A}\) to \({\mathcal B}\) is called a \textit{higher ring derivation} if \[ h_n(zw)=\sum_{i=0}^{n}h_i(z)h_{n-i}(w),\qquad z,w\in{\mathcal A}, n=0,1,\dots. \] A sequence \(F=\{f_0,f_1,\dots\}\) of operators from \({
Park, Kyoo-Hong, Jung, Yong-Soo
openaire   +1 more source

Study on Approximate C∗‐Bimultiplier and JC∗‐Bimultiplier in C∗‐Ternary Algebra

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2026, Issue 1, 2026.
An additive‐quadratic mapping F:A×A⟶B is one that adheres to the following equations: Fr+s,t=Fr,t+Fs,t,Fr,s+t+Fr,s−t=22Fr,s+Fr,t. This paper leverages the fixed‐point method to investigate C∗‐bimultiplier and JC∗‐bimultiplier approximations on C∗‐ternary algebras. The focus is on the additive‐quadratic functional equation: Fr+s,t+u+Fr+s,t−u=2222Fr,t+Fr,
Mina Mohammadi   +3 more
wiley   +1 more source

Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]

open access: yes, 2019
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb   +2 more
core  

On the Orthogonal Stability of the Pexiderized Quadratic Equation

open access: yes, 2005
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J.   +12 more
core   +2 more sources

Representation of Multilinear Mappings and s‐Functional Inequality

open access: yesJournal of Mathematics, Volume 2026, Issue 1, 2026.
In the current research, we introduce the multilinear mappings and represent the multilinear mappings as a unified equation. Moreover, by applying the known direct (Hyers) manner, we establish the stability (in the sense of Hyers, Rassias, and Găvruţa) of the multilinear mappings, associated with the single multiadditive functional inequality.
Abasalt Bodaghi, Pramita Mishra
wiley   +1 more source

On stability for nonlinear implicit fractional differential equations

open access: yesLe Matematiche, 2015
The purpose of this paper is to establish some  types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj  

On the stability of J$^*-$derivations

open access: yes, 2009
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian   +25 more
core   +2 more sources

Hyers-ulam stability of a general quadratic functional equation

open access: yesPublications de l'Institut Mathematique, 2003
Summary: We obtain a general solution and solve the Hyers-Ulam stability problem for the general quadratic functional equation \(f(x+y+z)+f(x-y)+f(x-z)=f(x-y-z)+f(x+y)+f(x+z)\).
openaire   +2 more sources

Optimal Control Strategies and Continuous Dependence for Stochastic Hilfer Fractional Systems With Delay: A Volterra‐Fredholm Integro‐Differential Approach

open access: yesOptimal Control Applications and Methods, Volume 46, Issue 6, Page 2708-2726, November/December 2025.
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy