Results 61 to 70 of about 2,495 (216)
Hyers-Ulam-Rassias stability of a generalized Pexider functional equation
In this interesting paper, the authors investigate the generalized Hyers-Ulam stability for a functional equation of Pexider type on groups.
Charifi, Ahmed +2 more
openaire +3 more sources
On the Generalized Hyers-Ulam-Rassias Stability of Higher Ring Derivations [PDF]
Let \({\mathcal A}\), \({\mathcal B}\) be real or complex algebras. A sequence \(H=\{h_0,h_1,\dots\}\) of additive operators from \({\mathcal A}\) to \({\mathcal B}\) is called a \textit{higher ring derivation} if \[ h_n(zw)=\sum_{i=0}^{n}h_i(z)h_{n-i}(w),\qquad z,w\in{\mathcal A}, n=0,1,\dots. \] A sequence \(F=\{f_0,f_1,\dots\}\) of operators from \({
Park, Kyoo-Hong, Jung, Yong-Soo
openaire +1 more source
Study on Approximate C∗‐Bimultiplier and JC∗‐Bimultiplier in C∗‐Ternary Algebra
An additive‐quadratic mapping F:A×A⟶B is one that adheres to the following equations: Fr+s,t=Fr,t+Fs,t,Fr,s+t+Fr,s−t=22Fr,s+Fr,t. This paper leverages the fixed‐point method to investigate C∗‐bimultiplier and JC∗‐bimultiplier approximations on C∗‐ternary algebras. The focus is on the additive‐quadratic functional equation: Fr+s,t+u+Fr+s,t−u=2222Fr,t+Fr,
Mina Mohammadi +3 more
wiley +1 more source
Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb +2 more
core
On the Orthogonal Stability of the Pexiderized Quadratic Equation
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J. +12 more
core +2 more sources
Representation of Multilinear Mappings and s‐Functional Inequality
In the current research, we introduce the multilinear mappings and represent the multilinear mappings as a unified equation. Moreover, by applying the known direct (Hyers) manner, we establish the stability (in the sense of Hyers, Rassias, and Găvruţa) of the multilinear mappings, associated with the single multiadditive functional inequality.
Abasalt Bodaghi, Pramita Mishra
wiley +1 more source
On stability for nonlinear implicit fractional differential equations
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj
On the stability of J$^*-$derivations
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian +25 more
core +2 more sources
Hyers-ulam stability of a general quadratic functional equation
Summary: We obtain a general solution and solve the Hyers-Ulam stability problem for the general quadratic functional equation \(f(x+y+z)+f(x-y)+f(x-z)=f(x-y-z)+f(x+y)+f(x+z)\).
openaire +2 more sources
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja +3 more
wiley +1 more source

