Nonlinear analysis for Hilfer fractional differential equations
In this paper, we discuss nonlinear Hilfer fractional differential equations with separated boundary conditions. Using the well-known Leggett–Williams theorem, we first explore the existence of multiple positive solutions for the nonlinear Hilfer ...
Debananda Basua, Swaroop Nandan Bora
doaj +1 more source
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain.
Bashir Ahmad +3 more
doaj +1 more source
Smart malaria control using larvicidal plant extracts and mosquito nets. With the model, sensor nodes can be installed to collect environmental data that enhances the breeding of mosquitoes and the timing of malaria‐treated mosquito nets. Data collected can be processed using artificial intelligence for decision‐ and policy‐making.
Juliet Onyinye Nwigwe +6 more
wiley +1 more source
Hyers–Ulam stability of monomial functional equations on a general domain [PDF]
In the present paper the Hyers–Ulam stability of monomial functional equations for functions defined on a power-associative, power-symmetric groupoid is proved.
openaire +4 more sources
Studies on Fractional Differential Equations With Functional Boundary Condition by Inverse Operators
ABSTRACT Fractional differential equations (FDEs) generalize classical integer‐order calculus to noninteger orders, enabling the modeling of complex phenomena that classical equations cannot fully capture. Their study has become essential across science, engineering, and mathematics due to their unique ability to describe systems with nonlocal ...
Chenkuan Li
wiley +1 more source
Approximate solutions and Hyers–Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform [PDF]
Sina Etemad +4 more
openalex +1 more source
Note on the solution of random differential equations via ψ-Hilfer fractional derivative
This manuscript is devoted to an investigation of the existence, uniqueness and stability of random differential equations with ψ-Hilfer fractional derivative.
S. Harikrishnan +3 more
doaj +1 more source
On proportional hybrid operators in the discrete setting
In this article, we introduce a new nonlocal operator Hα$$ {H}^{\alpha } $$ defined as a linear combination of the discrete fractional Caputo operator and the fractional sum operator. A new dual operator Rα$$ {R}^{\alpha } $$ is also introduced by replacing the discrete fractional Caputo operator with the discrete fractional Riemann ...
Carlos Lizama, Marina Murillo‐Arcila
wiley +1 more source
Impact of Temperature Variability on the Caputo Fractional Malaria Model
This study aims to analyze the age related characteristics of malaria in human host by exploring Caputo fractional order models with temperature variability, that is looked into the combined effects of fractional order and temperature variability on malaria dynamics.
Dawit Kechine Menbiko +1 more
wiley +1 more source
Generalized Ulam–Hyers–Rassias Stability Results of Solution for Nonlinear Fractional Differential Problem with Boundary Conditions [PDF]
Naimi Abdellouahab +3 more
openalex +1 more source

