Results 71 to 80 of about 7,018 (204)
Fractional stochastic differential equations with memory effects are fundamental in modeling phenomena across physics, biology, and finance, where long‐range dependencies and random fluctuations coexist, yet their stability analysis under non‐Lipschitz conditions remains a significant challenge, particularly for systems involving Riemann–Liouville ...
Mohsen Alhassoun +2 more
wiley +1 more source
Hyers-Ulam Stability of the First-Order Matrix Differential Equations
We prove the generalized Hyers-Ulam stability of the first-order linear homogeneous matrix differential equations y→'(t)=A(t)y→(t). Moreover, we apply this result to prove the generalized Hyers-Ulam stability of the nth order linear differential ...
Soon-Mo Jung
doaj +1 more source
The aim of this paper is to study the stability of generalized Liouville–Caputo fractional differential equations in Hyers–Ulam sense. We show that three types of the generalized linear Liouville–Caputo fractional differential equations are Hyers–Ulam ...
Kui Liu, Michal Feckan, Jinrong Wang
semanticscholar +1 more source
Modeling and Stability Analysis of Time‐Dependent Free‐Fall Motion in Random Environments
This paper examines the stability of a fractional‐order model that describes the free‐fall motion of a football in changing environmental conditions. Traditional models often overlook memory effects and nonlocal influences like air resistance, humidity, and turbulence.
Alireza Hatami +4 more
wiley +1 more source
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability of the solution to an ...
Akbar Zada, Hira Waheed
doaj
In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed
V. Sowbakiya +3 more
doaj +1 more source
Stability of the Volterra Integrodifferential Equation [PDF]
In this paper, the Hyers-Ulam stability of the Volterra integrodifferential equation and the Volterra equation on the finite interval [0, T], T > 0, are studied, where the state x(t) take values in a Banach space ...
Janfada, Mohammad, Sadeghi, Gh.
core
The present study investigates the controllability problems for higher‐order semilinear fractional differential systems (HOSLFDSs) with state and control delays in the context of the Caputo fractional derivative. Exploiting the invertibility of the Gramian matrix of fractional order, the necessary and sufficient conditions for the controllability ...
Anjapuli Panneer Selvam +4 more
wiley +1 more source
In this study, we use the alternative fixed-point approach and the direct method to examine the generalized Hyers–Ulam stability of the quartic functional equation gu+mv+gu−mv=2m−17m−9gu+2m2−1m2gv−m−12g2u+m2gu+v+gu−v, with a fixed positive integer m/ge2
Ravinder Kumar Sharma, Sumit Chandok
doaj +1 more source
The Life and Work of D.H. Hyers, 1913-1997 [PDF]
The following is a sketch of the life and work of Donald Holmes Hyers, Professor Emeritus from the University of Southern California. The theorem put forth by Hyers in 1941 concerning linear functional equations has gained a great deal of interest over ...
Singleton, Brent D.
core

