Generalization of I.Vekua's integral representations of holomorphic functions and their application to the Riemann–Hilbert–Poincaré problem [PDF]
I. Vekua’s integral representations of holomorphic functions, whose m-th derivative (m≥0) is Hӧlder-continuous in a closed domain bounded by the Lyapunov curve, are generalized for analytic functions whose m-th derivative is representable by a Cauchy ...
Vakhtang Kokilashvili+1 more
doaj +3 more sources
Generalized Riemann-Hilbert Transmission and Boundary Value Problems, Fredholm Pairs and Bordisms
AMS-tex, 16 pages, 1 figure. to appear in Bull. Polish Acad.
Bogdan Bojarski, Andrzej Weber
openalex +5 more sources
A Class of Nonlinear Generalized Riemann-Hilbert-Poincaré Problems for Holomorphic Functions
By means of the theory of pseudo-monotone operators the existence of a solution of a class of nonlinear generalized Riemann-Hilbert-Poincaré problems for a holomorphic function in the unit disk is proved.
Lothar von Wolfersdorf
openalex +4 more sources
تناولت هذه الدراسة اشتقاق معادلة التكامل من الدرجة الثانية لفريدهولم مع نواة نيومان التي جرى تعميمها و المتعلقة بمسألة ريمان-هيلبرت المتعلقة بمناطق الضرب المترابطة المفتوحة. أظهرت إشتقاق معادلة التكامل معادلات تكامل ذو حدود قابلة للحل بشكل فريد لمسألة دريتشلت المعدلة على مناطق الضرب المترابطة المفتوحة.
Mohamed M. S. Nasser
openalex +4 more sources
Inverse Scattering Transform for the Generalized Derivative Nonlinear Schrödinger Equation via Matrix Riemann–Hilbert Problem [PDF]
The inverse scattering transformation for a generalized derivative nonlinear Schrödinger (GDNLS) equation is studied via the Riemann–Hilbert approach. In the direct scattering process, we perform the spectral analysis of the Lax pair associated with a 2 × 2
Fang Fang, Beibei Hu, Ling Zhang
openalex +2 more sources
Riemann-Hilbert Boundary Value Problem for Generalized Analytic Functions in Smirnov Classes [PDF]
The Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes is under consideration. The domain is supposed simply connected with Lyapunov or Radon boundary without cusps. In the work the special representation for generalized analytic functions of Smirnov classes is built.
S. Klimentov
openalex +2 more sources
The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems [PDF]
15 ...
Carlos Álvarez-Fernández+2 more
openalex +7 more sources
The Riemann–Hilbert problem and the generalized Neumann kernel
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
R. Wegmann+2 more
openalex +4 more sources
Riemann-Hilbert boundary value problems in BMO classes for generalized analytic functions
В работе рассматривается разрешимость краевой задачи Римана - Гильберта в классе BMO для обобщенных аналитических функций в предположении, что коэффициент краевого условия принадлежит пространству мультипликаторов класса BMO. Ранее автором построены примеры, когда задача с неотрицательным индексом в такой наиболее стественной постановке неразрешима в ...
S. B. Klimentov
openalex +2 more sources
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric poly-monogenic functions, i.e., null-solutions to iterated generalized Cauchy-Riemann equations, defined in axially symmetric domains.
Fuli He+4 more
openalex +3 more sources