Results 51 to 60 of about 26,140 (200)
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja+3 more
wiley +1 more source
Class numbers of totally real fields and applications to the Weber class number problem
The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's ...
Miller, John C.
core +1 more source
Abstract The unification of conformal and fuzzy gravities with internal interactions is based on the facts that i) the tangent group of a curved manifold and the manifold itself do not necessarily have the same dimensions and ii) both gravitational theories considered here have been formulated in a gauge theoretic way.
Gregory Patellis+3 more
wiley +1 more source
Change Point Analysis for Functional Data Using Empirical Characteristic Functionals
ABSTRACT We develop a new method to detect change points in the distribution of functional data based on integrated CUSUM processes of empirical characteristic functionals. Asymptotic results are presented under conditions allowing for low‐order moments and serial dependence in the data establishing the limiting null‐distribution of the proposed test ...
Lajos Horváth+2 more
wiley +1 more source
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
Supersymmetry of Affine Toda Models as Fermionic Symmetry Flows of the Extended mKdV Hierarchy
We couple two copies of the supersymmetric mKdV hierarchy by means of the algebraic dressing technique. This allows to deduce the whole set of (N,N) supersymmetry transformations of the relativistic sector of the extended mKdV hierarchy and to interpret ...
David M. Schmidtt
doaj +1 more source
Heine, Hilbert, Padé, Riemann, and Stieltjes: a John [PDF]
In 1986 J. Nuttall published in Constructive Approximation the paper "Asymptotics of generalized Jacobi polynomials", where with his usual insight he studied the behavior of the denominators ("generalized Jacobi polynomials") and the remainders of the ...
Martínez-Finkelshtein, Andrei+2 more
core +1 more source
Cauchy Biorthogonal Polynomials
The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite-Pade' approximation scheme. Associated to any totally positive kernel and a pair of positive measures on the positive axis we define ...
Aptekarev+33 more
core +2 more sources
Abstract We study convergence problems for the intermediate long wave (ILW) equation, with the depth parameter δ>0$\delta > 0$, in the deep‐water limit (δ→∞$\delta \rightarrow \infty$) and the shallow‐water limit (δ→0$\delta \rightarrow 0$) from a statistical point of view.
Guopeng Li, Tadahiro Oh, Guangqu Zheng
wiley +1 more source
Dispersionless Hierarchies, Hamilton-Jacobi Theory and Twistor Correspondences
The dispersionless KP and Toda hierarchies possess an underlying twistorial structure. A twistorial approach is partly implemented by the method of Riemann-Hilbert problem. This is however still short of clarifying geometric ingredients of twistor theory,
Boyer+30 more
core +2 more sources