Results 91 to 100 of about 43,961 (294)

Multi-class data augmentation for prediction of postpartum hemorrhage using improved ACGAN

open access: yesAlexandria Engineering Journal
The dataset of primary postpartum hemorrhage (PPH) faces the challenge of insufficient samples, and Generative Adversarial Networks (GANs) have shown considerable promise in addressing the scarcity and imbalance of samples in the diagnosis of PPH ...
Xiaodan Li   +6 more
doaj   +1 more source

In Situ Liquid‐Cell Transmission Electron Microscopy Insights Into Lithium‐Ion Battery Materials Degradation: Challenges and Emerging Solutions

open access: yesAdvanced Science, EarlyView.
Lithium‐ion battery degradation arises from complex, localized processes during operation, limiting long‐term performance. In situ electrochemical liquid cell TEM provides unique access to these mechanisms. This review summarizes degradation phenomena revealed by liquid cell TEM, traces the evolution of the three main cell designs, compares their ...
Walid Dachraoui, Rolf Erni
wiley   +1 more source

Urea‐Formaldehyde Resin Confined Silicon Nanodots Composites: High‐Performance and Ultralong Persistent Luminescence for Dynamic AI Information Encryption

open access: yesAdvanced Science, EarlyView.
Schematic illustration of SiNDs composite materials synthesis and its internal photophysical process mechanism. And an AI‐assisted dynamic information encryption process. ABSTRACT Persistent luminescence materials typically encounter an intrinsic trade‐off between high phosphorescence quantum yield (PhQY) and ultralong phosphorescence lifetime.
Yulu Liu   +9 more
wiley   +1 more source

Probabilistic Modeling for Prediction Errors to Enhance Balancing Market Participation of Photovoltaic Systems: Error Threshold Estimation, Multisite Aggregation, and Overloading Effects

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This study proposes a method to increase the value of solar power in balancing markets by managing prediction errors. The approach models prediction uncertainties and quantifies reserve requirements based on a probabilistic model. This enables the more reliable participation of photovoltaic plants in balancing markets across multiple sites, especially ...
Jindan Cui   +3 more
wiley   +1 more source

Generative Artificial Intelligence Shaping the Future of Agri‐Food Innovation

open access: yesAgriFood: Journal of Agricultural Products for Food, EarlyView.
Emerging use cases of generative artificial intelligence in agri‐food innovation. ABSTRACT The recent surge in generative artificial intelligence (AI), typified by models such as GPT, diffusion models, and large vision‐language architectures, has begun to influence the agri‐food sector.
Jun‐Li Xu   +2 more
wiley   +1 more source

Experimental validation of the RESPONSE framework against cyberattacks on cyber‐physical process systems

open access: yesAIChE Journal, EarlyView.
Abstract This work experimentally validates the RESPONSE (Resilient Process cONtrol SystEm) framework as a solution for maintaining safe, continuous operation of cyber‐physical process systems under cyberattacks. RESPONSE implements a dual‐loop architecture that runs a networked online controller in parallel with a hard‐isolated offline controller ...
Luyang Liu   +5 more
wiley   +1 more source

Domain‐Aware Implicit Network for Arbitrary‐Scale Remote Sensing Image Super‐Resolution

open access: yesAdvanced Intelligent Discovery, EarlyView.
Although existing arbitrary‐scale image super‐resolution methods are flexible to reconstruct images with arbitrary scales, the characteristic of training distribution is neglected that there exists domain shift between samples of various scales. In this work, a Domain‐Aware Implicit Network (DAIN) is proposed to handle it from the perspective of domain
Xiaoxuan Ren   +6 more
wiley   +1 more source

AI‐Enhanced Surface‐Enhanced Raman Scattering for Accurate and Sensitive Biomedical Sensing

open access: yesAdvanced Intelligent Discovery, EarlyView.
AI‐SERS advances spectral interpretation with greater precision and speed, enhancing molecular detection, biomedical analysis, and imaging. This review explores its essential contributions to biofluid analysis, disease identification, therapeutic agent evaluation, and high‐resolution biomedical imaging, aiding diagnostic decision‐making.
Seungki Lee, Rowoon Park, Ho Sang Jung
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Home - About - Disclaimer - Privacy