Results 41 to 50 of about 219,883 (315)
Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network [PDF]
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low ...
Zhangkai Ni +4 more
semanticscholar +1 more source
Survey of generative adversarial network
Firstly, the basic theory, application scenarios and current state of research of GAN (generative adversarial network) were introduced, and the problems need to be improved were listed. Then, recent research, improvement mechanism and model features in 2
WANG Zhenglong, ZHANG Baowen
doaj +3 more sources
Text Generation Based on Generative Adversarial Nets with Latent Variable
In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is
Qin, Zengchang, Wan, Tao, Wang, Heng
core +1 more source
Lung image segmentation via generative adversarial networks
IntroductionLung image segmentation plays an important role in computer-aid pulmonary disease diagnosis and treatment.MethodsThis paper explores the lung CT image segmentation method by generative adversarial networks.
Jiaxin Cai +4 more
doaj +1 more source
This paper introduces a novel and robust data-driven algorithm designed for Aircraft Trajectory Prediction (ATP). The approach employs a Neural Network architecture to predict future aircraft trajectories, utilizing input variables such as latitude ...
Seyed Mohammad Hashemi +3 more
doaj +1 more source
GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction [PDF]
In the past few years, a lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs).
Baris Gecer +3 more
semanticscholar +1 more source
Attentively Conditioned Generative Adversarial Network for Semantic Segmentation
Generative Adversarial Network has proven to produce state-of-the-art results by framing a generative modeling task into a supervised learning problem. In this paper, we propose Attentively Conditioned Generative Adversarial Network (ACGAN) for semantic ...
Ariyo Oluwasanmi +5 more
doaj +1 more source
Motion blur is a common problem in optical imaging, which is caused by the relative displacement between the subject and the camera in the exposure process of the camera.
Zhenfeng Zhang
doaj +1 more source
Adversarial Spatio-Temporal Learning for Video Deblurring
Camera shake or target movement often leads to undesired blur effects in videos captured by a hand-held camera. Despite significant efforts having been devoted to video-deblur research, two major challenges remain: 1) how to model the spatio-temporal ...
Li, Hongdong +5 more
core +1 more source
A Q‐Learning Algorithm to Solve the Two‐Player Zero‐Sum Game Problem for Nonlinear Systems
A Q‐learning algorithm to solve the two‐player zero‐sum game problem for nonlinear systems. ABSTRACT This paper deals with the two‐player zero‐sum game problem, which is a bounded L2$$ {L}_2 $$‐gain robust control problem. Finding an analytical solution to the complex Hamilton‐Jacobi‐Issacs (HJI) equation is a challenging task.
Afreen Islam +2 more
wiley +1 more source

