Results 51 to 60 of about 124,232 (320)
Dairy Goat Image Generation Based on Improved-Self-Attention Generative Adversarial Networks
The lack of long-range dependence in convolutional neural networks causes weaker performance in generative adversarial networks(GANs) with regard to generating image details. The self-attention generative adversarial network(SAGAN) use the self-attention
Huan Li, Jinglei Tang
doaj +1 more source
Coevolution of Generative Adversarial Networks [PDF]
Published in EvoApplications ...
Victor Costa +2 more
openaire +4 more sources
Spatial evolutionary generative adversarial networks [PDF]
Generative adversary networks (GANs) suffer from training pathologies such as instability and mode collapse. These pathologies mainly arise from a lack of diversity in their adversarial interactions. Evolutionary generative adversarial networks apply the principles of evolutionary computation to mitigate these problems.
Toutouh, Jamal +2 more
openaire +5 more sources
HGAN: Hybrid generative adversarial network [PDF]
In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood.
Seyed Mehdi Iranmanesh +1 more
openaire +3 more sources
Survey of generative adversarial network
Firstly, the basic theory, application scenarios and current state of research of GAN (generative adversarial network) were introduced, and the problems need to be improved were listed. Then, recent research, improvement mechanism and model features in 2
WANG Zhenglong, ZHANG Baowen
doaj +3 more sources
Slimmable Generative Adversarial Networks
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models make them challenging to deploy widely in practical applications. In particular, for real-time generation tasks, different devices require generators of different sizes due to varying computing power.
Hou, Liang +5 more
openaire +2 more sources
EvolGAN: Evolutionary Generative Adversarial Networks [PDF]
We propose to use a quality estimator and evolutionary methods to search the latent space of generative adversarial networks trained on small, difficult datasets, or both. The new method leads to the generation of significantly higher quality images while preserving the original generator's diversity.
Roziere, Baptiste +6 more
openaire +3 more sources
Text Generation Based on Generative Adversarial Nets with Latent Variable
In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is
Qin, Zengchang, Wan, Tao, Wang, Heng
core +1 more source
Training Generative Adversarial Networks With Weights [PDF]
The impressive success of Generative Adversarial Networks (GANs) is often overshadowed by the difficulties in their training. Despite the continuous efforts and improvements, there are still open issues regarding their convergence properties. In this paper, we propose a simple training variation where suitable weights are defined and assist the ...
Pantazis, Yannis +3 more
openaire +3 more sources
This paper introduces a novel and robust data-driven algorithm designed for Aircraft Trajectory Prediction (ATP). The approach employs a Neural Network architecture to predict future aircraft trajectories, utilizing input variables such as latitude ...
Seyed Mohammad Hashemi +3 more
doaj +1 more source

