Results 61 to 70 of about 128,746 (262)
This study proposes a method to increase the value of solar power in balancing markets by managing prediction errors. The approach models prediction uncertainties and quantifies reserve requirements based on a probabilistic model. This enables the more reliable participation of photovoltaic plants in balancing markets across multiple sites, especially ...
Jindan Cui +3 more
wiley +1 more source
Data-driven Crop Growth Simulation on Time-varying Generated Images using Multi-conditional Generative Adversarial Networks [PDF]
Lukas Drees +6 more
openalex +1 more source
Generative Artificial Intelligence Shaping the Future of Agri‐Food Innovation
Emerging use cases of generative artificial intelligence in agri‐food innovation. ABSTRACT The recent surge in generative artificial intelligence (AI), typified by models such as GPT, diffusion models, and large vision‐language architectures, has begun to influence the agri‐food sector.
Jun‐Li Xu +2 more
wiley +1 more source
Abstract This work experimentally validates the RESPONSE (Resilient Process cONtrol SystEm) framework as a solution for maintaining safe, continuous operation of cyber‐physical process systems under cyberattacks. RESPONSE implements a dual‐loop architecture that runs a networked online controller in parallel with a hard‐isolated offline controller ...
Luyang Liu +5 more
wiley +1 more source
Domain‐Aware Implicit Network for Arbitrary‐Scale Remote Sensing Image Super‐Resolution
Although existing arbitrary‐scale image super‐resolution methods are flexible to reconstruct images with arbitrary scales, the characteristic of training distribution is neglected that there exists domain shift between samples of various scales. In this work, a Domain‐Aware Implicit Network (DAIN) is proposed to handle it from the perspective of domain
Xiaoxuan Ren +6 more
wiley +1 more source
AI‐Enhanced Surface‐Enhanced Raman Scattering for Accurate and Sensitive Biomedical Sensing
AI‐SERS advances spectral interpretation with greater precision and speed, enhancing molecular detection, biomedical analysis, and imaging. This review explores its essential contributions to biofluid analysis, disease identification, therapeutic agent evaluation, and high‐resolution biomedical imaging, aiding diagnostic decision‐making.
Seungki Lee, Rowoon Park, Ho Sang Jung
wiley +1 more source
Dilated Spatial Generative Adversarial Networks for Ergodic Image Generation
Generative models have recently received renewed attention as a result of adversarial learning. Generative adversarial networks consist of samples generation model and a discrimination model able to distinguish between genuine and synthetic samples.
Gasso, Gilles +3 more
core
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz +2 more
wiley +1 more source
Generating Realistic Geology Conditioned on Physical Measurements with Generative Adversarial Networks [PDF]
Emilien Dupont +4 more
openalex +1 more source

