Results 131 to 140 of about 266,050 (343)
This study explores the use of fluorinated copolymers with varying fluorophilic side chain lengths to enhance PFAS affinity. The integration of electrochemical techniques demonstrates enhanced adsorbent regeneration, with molecular dynamics simulations providing insight into the molecular‐level interactions involved.
Anaira Román Santiago+7 more
wiley +1 more source
A new small‐molecule acceptor (SMA‐Ph‐CF3) is developed using a dual side chain functionalization strategy that incorporates trifluoromethyl and phenyl groups. This approach enables precise tuning of blend morphology, leading to the fabrication of high‐performance organic solar cells with a power conversion efficiency of 18.5%.
Shinbee Oh+5 more
wiley +1 more source
Atomic Size Misfit for Electrocatalytic Small Molecule Activation
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong+3 more
wiley +1 more source
Background. In recent years, there has been a search for alternative sources of electricity that use natural and man-made energy sources, such as solar radiation, water movement, wind, vibration and others. On an industrial scale, solar panels and wind
V.A. Bardin+5 more
doaj +1 more source
This work demonstrates an interphase strain engineering strategy to regulate capacitive energy storage performance in high‐entropy oxide thin films. Through introducing pyrochlore nanocolumns, the polarization response of perovskite unit cells is strengthened, yielding recoverable energy densities up to 93 J cm−3 with an efficiency of 83% under ...
Hao Luo+11 more
wiley +1 more source
A well‐modulated CeO2/Fe3C heterostructure is successfully constructed. The electron redistribution induced by CeO2 not only enhances the formation energy of Fe vacancies and hinders the dissolution of Fe but also reduces the energy barrier of the ORR.
Peng Wang+8 more
wiley +1 more source
In this paper, a built‐in electric field (BEF) strategy is proposed to fabricate NiFe‐LDH/antimonene heterostructure as bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The formed BEF generates a local potential that reduces the potential for the formation of β‐NiOOH, thereby enabling ultra‐low ...
Jingkun Wang+11 more
wiley +1 more source
Tuning the Hydrogen Bond Network Inside the Helmholtz Plane for Industrial Hydrogen Evolution
The hydrogen bond network within the Helmholtz plane, a key component affecting the hydrogen evolution kinetics, remains far from having a consensus owing to the lack of fundamental understanding. Herein, it is discovered that the introduction of the atomic electric field generated by the weak Ru─Ga bonds can further improve the proportion of 4 ...
Xinyu Chen+9 more
wiley +1 more source
Ultrasoft Iontronics: Stretchable Diodes Enabled by Ionically Conductive Bottlebrush Elastomers
This work introduces a solvent‐free, ultrasoft, and stretchable ionic diode based on oppositely charged bottlebrush elastomers (BBEs). The BBE diode exhibits an ultralow Young's modulus (<23 kPa), a high rectification ratio of 46, and stretchability over 400%.
Xia Wu+6 more
wiley +1 more source
A self‐sustaining solar photoelectrochemical cell (SS‐PEC) is developed to recover uranium from aqueous UO22+ with concurrent organic oxidation and electricity production. The monolithical photoanode directly captures electrons from organic compounds, leading to the oxidation of organic compounds and the decomposition of uranium‐organic complexes ...
Yumei Wang+7 more
wiley +1 more source