Results 151 to 160 of about 1,614,787 (277)

Circular Potential of Lithium‐Ion Battery Recycling Slags: Quantifying Microstructure and Elemental Distribution for a Holistic Valorization

open access: yesAdvanced Science, EarlyView.
A lithium‐bearing slag is investigated with the goal of holistic valorization. The present β‐eucryptite (LiAlSiO4) exhibits a high lithium content and low levels of impurities. The spinel contains most of the chromium and vanadium, representing additional valorization opportunities.
Peter Cornelius Gantz   +9 more
wiley   +1 more source

Geographical distribution and access of burn victims to a specialized treatment unit: a cross-sectional study. [PDF]

open access: yesActa Cir Bras
Falco Neto W   +8 more
europepmc   +1 more source

Scalable Upcycling of Spent Lithium‐Ion Battery Anodic Graphite to Electronic‐Grade Graphene

open access: yesAdvanced Science, EarlyView.
Graphite anodes from spent lithium‐ion batteries are upcycled into electronic‐grade graphene nanoplatelets for highly conductive screen printing inks (> 104 S m−1). Screen‐printed micro‐supercapacitors confirm the utility of the upcycled graphene (1.78 mF/cm2 capacitance for > 10 000 cycles). Life cycle assessment and techno‐economic analysis highlight
Janan Hui   +8 more
wiley   +1 more source

From Materials to Systems: Challenges and Solutions for Fast‐Charge/Discharge Na‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This review systematically analyzes the key characteristics limiting the fast‐charge/discharge capability of Na‐ion batteries (SIBs) from a multi‐scale perspective encompassing electrode materials, the electrode‐electrolyte interface, and the system. Furthermore, it presents practical solution strategies for the fundamental issues arising at each scale,
Bonyoung Ku   +5 more
wiley   +1 more source

Safety of Sodium‐Ion Batteries: Evaluation and Perspective from Component Materials to Cells, Modules, and Packs

open access: yesAdvanced Energy Materials, EarlyView.
This review provides a bottom‐up evaluation of sodium‐ion battery safety, linking material degradation mechanisms, cell engineering parameters, and module/pack assembly. It emphasizes that understanding intrinsic material stability and establishing coordinated engineering control across hierarchical levels are vital for preventing degradation coupling ...
Won‐Gwang Lim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy