Results 161 to 170 of about 349,076 (327)

Charge‐Induced Morphing Gels for Bioinspired Actuation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu   +4 more
wiley   +1 more source

Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass

open access: yesAdvanced Functional Materials, EarlyView.
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das   +8 more
wiley   +1 more source

Reinforced Concrete‐Inspired Multiscale Hierarchical Metamaterial Composite for Synergistic Enhancement Across Thermal, Electromagnetic, and Mechanical Domains

open access: yesAdvanced Functional Materials, EarlyView.
A structurally integrated multiscale hierarchical metamaterial composite (MHMC), inspired by the synergistic architecture of reinforced concrete, achieves simultaneous enhancement of thermal, electromagnetic, and mechanical functionalities. By combining a carbon black‐based mechanical metamaterial with a porosity‐graded cellulose acetate aerogel, this ...
Jeongwoo Lee   +9 more
wiley   +1 more source

Topology to geometry in protein folding: β-Lactoglobulin

open access: green, 2000
Ariel Fernández   +2 more
openalex   +1 more source

Inhalability and Bioactivity of Spray‐Dried versus Pressurized Gas eXpanded Liquid Technology‐Processed Yeast Beta‐Glucan Microparticles for Anti‐Fibrotic Therapies

open access: yesAdvanced Healthcare Materials, EarlyView.
PGXTEC) liquid technology is utilized to develop highly respirable yeast beta‐glucan (YBG) microparticles for the treatment of pulmonary fibrosis. Compared to conventionally processed spray‐dried YBG, PGXTEC‐YBG exhibits greatly improved aerodynamic properties, enhanced pro‐fibrotic macrophage uptake, and effective downregulation of pro‐fibrotic ...
Nate Dowdall   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy