Results 121 to 130 of about 3,445 (164)

Fuchsian Hyperbolic Equations in Gevrey Classes

open access: yesFuchsian Hyperbolic Equations in Gevrey Classes
openaire  

Strong hyperbolicity in Gevrey classes

Journal of Differential Equations, 2021
In this paper, the authors consider the Cauchy problem \[ \begin{cases} P(t,\partial_t,\partial_x)u(t,x)=0,\quad(t,x)\in[0,T]\times\mathbb R\\ \partial_t^ju(0,x)=u_j(x),\quad x\in\mathbb R,\quad j=0,...,m-1 \end{cases}\tag{CP} \] where \(P\) is a differential operator of order \(m\) with respect to \(t\) written in the form \[P(t,\partial_t,\partial_x)=
Colombini, Ferruccio   +2 more
openaire   +3 more sources

FBI transforms in Gevrey classes

Journal d'Analyse Mathématique, 1997
The following theorem is proved: Let \({\mathcal O}\) be a Gevrey \(s\) strictly convex obstacle, \(1 \leq s < 3\). Then for every positive \(\varepsilon\) there are only finitely many resonances in the region \(\{ k \in {\mathbb C} \mid\text{Re }k \geq 1, \text{ Im } k \geq -(C_{0, a} - \varepsilon) (\text{Re } k)^{1/3} \}\).
Lascar, Bernard, Lascar, Richard
openaire   +2 more sources

Hypoellipticity and Local Solvability in Gevrey Classes

Mathematische Nachrichten, 2002
As standard, let \(G^s ...
A. ALBANESE   +2 more
openaire   +5 more sources

NONLINEAR HYPERBOLIC CAUCHY PROBLEMS IN GEVREY CLASSES

Chinese Annals of Mathematics, 2001
The authors consider the quasilinear Cauchy problem \[ \sum_{ |\alpha|\leq m}a_\alpha (t,x,D^\beta_{t,x} u)D^\alpha_{t,x} u=f(t,x, D^\beta_{t,x}u), \] \[ D^j_t u|_{t=0}=0,\;0\leq ...
CICOGNANI M., ZANGHIRATI, Luisa
openaire   +2 more sources

Gevrey class for locally thermoelastic beam equations

Zeitschrift für angewandte Mathematik und Physik, 2022
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Bruna T. S. Sozzo, Jaime E. M. Rivera
openaire   +2 more sources

Smoothing effect in Gevrey classes for Schrodinger equations

ANNALI DELL UNIVERSITA DI FERRARA, 1999
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +3 more sources

Regularly hyperbolic systems and Gevrey classes

Annali di Matematica Pura ed Applicata, 1985
This paper deals with the first order Cauchy problem \[ (1)\quad \partial U/\partial t=\sum A_ h(t,x) \partial U/\partial x_ h+B(t,x),\quad U(0,x)=g(x), \] \(0\leq t\leq T\), \(x\in {\mathbb{R}}^ n\), where \(A_ h\) (1\(\leq h\leq n)\) and \(B\) are \(N\times N\) real matrices, while U and g are real \(N\)-vectors. System (1) is assumed to be regularly
openaire   +1 more source

Home - About - Disclaimer - Privacy