Results 121 to 130 of about 3,445 (164)
Fuchsian Hyperbolic Equations in Gevrey Classes
openaire
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Strong hyperbolicity in Gevrey classes
Journal of Differential Equations, 2021In this paper, the authors consider the Cauchy problem \[ \begin{cases} P(t,\partial_t,\partial_x)u(t,x)=0,\quad(t,x)\in[0,T]\times\mathbb R\\ \partial_t^ju(0,x)=u_j(x),\quad x\in\mathbb R,\quad j=0,...,m-1 \end{cases}\tag{CP} \] where \(P\) is a differential operator of order \(m\) with respect to \(t\) written in the form \[P(t,\partial_t,\partial_x)=
Colombini, Ferruccio +2 more
openaire +3 more sources
FBI transforms in Gevrey classes
Journal d'Analyse Mathématique, 1997The following theorem is proved: Let \({\mathcal O}\) be a Gevrey \(s\) strictly convex obstacle, \(1 \leq s < 3\). Then for every positive \(\varepsilon\) there are only finitely many resonances in the region \(\{ k \in {\mathbb C} \mid\text{Re }k \geq 1, \text{ Im } k \geq -(C_{0, a} - \varepsilon) (\text{Re } k)^{1/3} \}\).
Lascar, Bernard, Lascar, Richard
openaire +2 more sources
Hypoellipticity and Local Solvability in Gevrey Classes
Mathematische Nachrichten, 2002As standard, let \(G^s ...
A. ALBANESE +2 more
openaire +5 more sources
NONLINEAR HYPERBOLIC CAUCHY PROBLEMS IN GEVREY CLASSES
Chinese Annals of Mathematics, 2001The authors consider the quasilinear Cauchy problem \[ \sum_{ |\alpha|\leq m}a_\alpha (t,x,D^\beta_{t,x} u)D^\alpha_{t,x} u=f(t,x, D^\beta_{t,x}u), \] \[ D^j_t u|_{t=0}=0,\;0\leq ...
CICOGNANI M., ZANGHIRATI, Luisa
openaire +2 more sources
Gevrey class for locally thermoelastic beam equations
Zeitschrift für angewandte Mathematik und Physik, 2022zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Bruna T. S. Sozzo, Jaime E. M. Rivera
openaire +2 more sources
Smoothing effect in Gevrey classes for Schrodinger equations
ANNALI DELL UNIVERSITA DI FERRARA, 1999zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +3 more sources
Regularly hyperbolic systems and Gevrey classes
Annali di Matematica Pura ed Applicata, 1985This paper deals with the first order Cauchy problem \[ (1)\quad \partial U/\partial t=\sum A_ h(t,x) \partial U/\partial x_ h+B(t,x),\quad U(0,x)=g(x), \] \(0\leq t\leq T\), \(x\in {\mathbb{R}}^ n\), where \(A_ h\) (1\(\leq h\leq n)\) and \(B\) are \(N\times N\) real matrices, while U and g are real \(N\)-vectors. System (1) is assumed to be regularly
openaire +1 more source

