Results 101 to 110 of about 2,586,361 (182)
This study investigates the mechanical properties of Carbon/Aramid intraply hybrid fiber‐reinforced Elium composites under 6 months of water aging. After aging, flexural strength decreases by 25.89%, tensile strength by 4.40%, and fracture toughness by 21.56%.
Muhammed Huseyin Guzel, Gurol Onal
wiley +1 more source
Impacts of Device Geometry and Layout on Temperature Profile during Large‐Area Photonic Curing
The study investigates how gate geometry affects peak curing temperature during photonic curing of solution‐processed indium zinc oxide thin‐film transistors. Using 3D simulations and experimental validation, it reveals that larger gate areas and smaller aspect ratios increase curing temperature and thus improve transistor performance. Findings provide
Yasir Fatha Abed+3 more
wiley +1 more source
Shape Memory Polymer‐Based Hook‐and‐Loop Fastener for Robust Bonding and on‐Demand Easy Separation
A 3D shape memory polymer‐based hook‐and‐loop fastener, fabricated using projection microstereolithography and molding, offers tunable bonding strength through temperature control. When heated from 25 to 70 °C, the fastener softens and deforms easily, reducing bonding strength by 20‐fold for on‐demand easy separation.
Chen Yang+5 more
wiley +1 more source
Recent Progress on 2D‐Material‐Based Smart Textiles: Materials, Methods, and Multifunctionality
Advancements in 2D‐material‐integrated smart textiles are reviewed, with a focus on materials, fabrication methods, and multifunctional applications, including energy harvesting, monitoring, EMI shielding, energy storage, and thermal management. The discussion addresses key challenges and provides insights into the future development of next‐generation
Yong Choi+5 more
wiley +1 more source
A short introduction to the physics and the method to treat quantum crystals of electrons (Wigner crystal) and the related disordered elastic systems.
openaire +3 more sources
In this research, ZrC coatings are evaluated against various counterprobes at the microscale using novel super‐stiff atomic force microscopy cantilevers. The chemical composition of the coating is shown to be an important factor influencing coating hardness and Young's modulus, while surface roughness, counterprobe hardness, and surface energy are the ...
Piotr Jenczyk+4 more
wiley +1 more source
Laboratory protocols for producing thin‐film pH electrodes for sterilized single‐use technologies have been successfully developed into a semiautomated workflow, with higher throughput and precision of membrane thickness. Accuracies are within 0.05 pH units versus ground truth, and uncertainty analysis reveals the largest sources of error to be derived
Bingyuan Zhao+4 more
wiley +1 more source
From Nature to Engineering: Mortar Volume and Interfacial Mechanics in Bioinspired Ceramics
Inspired by natural armors like nacre, this study explores how varying the volume fraction of the soft mortar layer impacts the interfacial strength and toughness of bioinspired ceramics. Experimental and computational analysis reveals that higher mortar volumes increase energy dissipation but reduce interfacial stiffness, offering insights for ...
Ehsan Azad+4 more
wiley +1 more source
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach+6 more
wiley +1 more source
This study aims to establish a link between the dielectric properties of polyamide 12 (PA12) and its thermal and rheological properties using dielectric analysis (DEA). A standardized methodology is introduced to determine melting and crystallization temperatures.
Benedikt Burchard+2 more
wiley +1 more source