Results 241 to 250 of about 588,079 (357)

Degradable Magnetic Composites from Recycled NdFeB Magnets for Soft Actuation and Sensing

open access: yesAdvanced Robotics Research, EarlyView.
This work presents a degradable soft magnetic composite made from recycled NdFeB particles embedded in a gelatin‐based organogel. The material is processed into magnetic sensors and soft robotic components, which can later be dissolved in a green solvent to recover NdFeB magnetic particles.
Muhammad Bilal Khan   +14 more
wiley   +1 more source

Additional file 1: of Red ceramics produced from mixtures of kaolinite clay and waste glass

open access: green, 2015
Emmanuel Tiffo   +3 more
openalex   +1 more source

Midbrain PAG Astrocytes Modulate Mouse Defensive and Panic‐Like Behaviors

open access: yesAdvanced Science, EarlyView.
Astrocytes in the midbrain periaqueductal gray (PAG) dynamically encode threat intensity and shape defensive action selection in mice. Real‐time Ca2+ imaging reveals robust astrocytic activation during predator odor and CO2 exposure. Aberrant astrocytic Ca2+ overactivation disrupts goal‐directed escape, biases behavior toward freezing, and induces ...
Ellane Barcelon   +10 more
wiley   +1 more source

Cement plate slab production with the incorporation of glass wool waste ground

open access: green, 2018
Nathany Angélica dos Santos   +5 more
openalex   +1 more source

Enhancing the Ultrasonic Welding of Wood Using 3D Printed Lignin Energy Directors

open access: yesAdvanced Science, EarlyView.
Sustainable manufacturing for lightweight structures using ecofriendly materials will be key to reducing material consumption and lowering carbon footprints. Here, an approach is presented to weld wood using ultrasonic vibrations with material at the joint interface to direct energy.
Muhamad Amani   +6 more
wiley   +1 more source

Hyperelastic Starch Hydrogel Configures Edible and Biodegradable All‐Components for Soft Robots

open access: yesAdvanced Science, EarlyView.
Hyperelastic starch hydrogel is tailored via a phase separation strategy of solvent‐antisolvent co‐modulation. The mechanical performance of starch hydrogel is widely tuned with maximum strains: 194.4–361.4%; maximum tensile stresses: 34–192 kPa; and Young's moduli: 36.0–205.8 kPa. Notably, the hydrogel achieves complete soil degradation within 24 days
Siyu Yao   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy