Caryotype de Glossina palpalis gambiensis, Vanderplank, 1949 : comparaison avec d'autres espèces du groupe palpalis et du groupe morsitans [PDF]
Glossina palpalis gambiensis possède, comme les autres espèces du sous-genre Nemorhina (Groupe palpalis), quatre autosomes (2 L1 + 2 L2) et deux chromosomes sexuels (XX ou XY).
Itard, Jacques
core +3 more sources
Ecologie de Glossina palpalis gambiensis Vanderplank, 1949
L'auteur passe en revue les différents points de l'écologie de Glossina palpalis étudiés en Afrique occidentale: répartition des sous-espèces, environnement, action des facteurs écologiques sur l'imago et la pupe, comportement (activité et lieux de repos), relations avec les autres animaux, dispersion et dynamique des populations.
A. Challier
openaire +7 more sources
Amélioration de la technique de salivation des glossines pour la détection des métatrypanosomes infectants : étude de quelques facteurs biologiques et non biologiques sur le comportement de sondage des glossines [PDF]
Le comportement de sondage et de salivation sur lame chauffée est examiné chez trois espèces ou sous-espèces de glossines (Glossina morsitans morsitans, Glossina palpalis gambiensis, Glossina tachinoides) en fonction de certains paramètres (espèce, sexe,
Cuisance, Dominique +3 more
core +3 more sources
Evaluation of two candidate molecules-TCTP and cecropin-on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis. [PDF]
This study investigates the potential of enhancing the resistance of Glossina palpalis gambiensis to Trypanosoma brucei gambiense to mitigate the transmission of Human African Trypanosomiasis. We successfully cloned genes encoding proteins of interest in Sodalis strains, resulting in recombinant Sodalis (recSodalis) that were micro‐injected into the L3
Ngambia Freitas FS +9 more
europepmc +2 more sources
Ecotype evolution in Glossina palpalis subspecies, major vectors of sleeping sickness. [PDF]
BACKGROUND:The role of environmental factors in driving adaptive trajectories of living organisms is still being debated. This is even more important to understand when dealing with important neglected diseases and their vectors.
De Meeûs T +3 more
europepmc +2 more sources
The Sensory Ecology of Tsetse Flies: Neuroscience Perspectives on a Disease Vector. [PDF]
Tsetse flies (Glossina sp.) are important disease vectors that feed on vertebrate blood. Host‐seeking depends on a combination of sensory systems, from long‐range senses like olfaction and vision, to shorter‐range senses such as audition, mechanosensation, thermosensation and taste.
Adden A, Prieto-Godino LL.
europepmc +2 more sources
Morphometric diagnosis of Glossina palpalis (Diptera: Glossinidae) population structure in Ghana. [PDF]
Objective This study aimed to identify isolated population(s) of Glossina palpalis in Ghana using geometric morphometrics to evaluate variations in wing-shape and size between populations of the fly from three regions. Results Wing shape of G.
Ebhodaghe F +3 more
europepmc +2 more sources
Detection of Wolbachia and different trypanosome species in Glossina palpalis palpalis populations from three sleeping sickness foci of southern Cameroon. [PDF]
Background African trypanosomiases are caused by trypanosomes that are cyclically transmitted by tsetse. Investigations aiming to generate knowledge on the bacterial fauna of tsetse have revealed distinct symbiotic microorganisms.
Kanté ST +4 more
europepmc +2 more sources
Tsetse EP protein protects the fly midgut from trypanosome establishment. [PDF]
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut.
Lee R Haines +3 more
doaj +1 more source
Main functions of underexpressed proteins in infected flies: transcription/translation processes; biosynthetic and metabolic processes (ATP synthesis); and glutathione S‐transferase activity = metabolic and immune destabilisation and weakening of the fly during infection. Main functions of overexpressed proteins in infected flies (serpins as an example)
Jean Marc Tsagmo +5 more
wiley +1 more source

