Results 191 to 200 of about 14,550 (311)

Enhancing and Stabilizing Hydrogen Catalysis Through [NiFe]‐Hydrogenase Immobilization Within Macroporous Covalent Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
[NiFe]‐hydrogenases efficiently catalyze hydrogen conversion, but their instability limits biotechnological applications. Here it is shown that encapsulating hydrogenase into hierarchical COFs with macro‐ and micropores and functionalized with sulfonic or carboxylic acid groups improves enzyme stability and electron transfer to electrodes.
Islam E. Khalil   +12 more
wiley   +1 more source

Preparation of Highly Active Mg-Al-Li-B Alloys via High-Temperature Sintering. [PDF]

open access: yesMaterials (Basel)
Wang Y   +7 more
europepmc   +1 more source

Electro‐Active Polymer Actuated Microfiltration Membranes: Design, Performance, and Particle Dynamics

open access: yesAdvanced Functional Materials, EarlyView.
The concept of foulant particle manipulation and detachment from active microfiltration membranes via voltage‐driven vibrations is introduced. Actuator components are initially integrated onto the filtration membranes using an airbrush spray printing technique.
Irem Gurbuz, Hanieh Bazyar, Andres Hunt
wiley   +1 more source

Selective Charge Injection via Topological van der Waals Contacts for Barrier‐Free p‐Type TMD Transistors

open access: yesAdvanced Functional Materials, EarlyView.
 Topological van der Waals contacts represent a new class of electrodes for 2D semiconductors, enabling precise control of the Schottky barrier height (SBH) and contact resistance (RC) through interlayer distance and orbital hybridization engineering. In Se‐based transition metal dichalcogenides, these contacts achieve an ultralow SBH of 7 meV, RC of 0.
Soheil Ghods   +15 more
wiley   +1 more source

Fully Bio‐Based Gelatin Organohydrogels via Enzymatic Crosslinking for Sustainable Soft Strain and Temperature Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Enzymatically crosslinked gelatin‐based organohydrogels, fabricated through a fully bio‐based and scalable process, exhibit exceptional strain and temperature sensing capabilities with minimal interference from environmental humidity. These transparent, stretchable, and ionically conductive materials operate without synthetic fillers or dopants.
Pietro Tordi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy