Results 231 to 240 of about 569,411 (259)
Some of the next articles are maybe not open access.

Goodness of Fit

2021
Disorder (HD) is a complex mental health problem defined by an overabundance of clutter, difficulty with organization and discarding, and problems regulating acquisition. This chapter describes the features of HD, evidence-based intervention approaches and outcomes, and the elements of a manualized treatment approach with emphasis on flexible delivery ...
Suzanne Otte   +2 more
openaire   +2 more sources

Goodness-of-Fit

2001
Abstract To review Gregor Mendel’s observations made on ornamental garden peas [Pisum sativum), particularly the correspondence to two specific ratios (3:1 and 2:1). In addition, to explore the question: do Mendel’s data correspond to these ratios too closely, indicating a bias in recording his experimental results?
Robert P. Trueblood, John N. Lovett
openaire   +2 more sources

Goodness of Fit

Journal of the American Statistical Association, 1967
Abstract This Paper defines a class of distribution free measures of goodness of fit; their exact distribution for small samples can be calculated by means of a computer. Two of them have the same asymptotic distribution as the Kolmogorov-Smirnov statistic.
openaire   +1 more source

Improved Goodness-Of-Fit Tests

Biometrika, 1971
Two statistics for testing goodness of fit for small sample sizes are provided. The first statistic, S, can be used to test the fit to any completely specified continuous distribution function and is more powerful than the Kolmogorov-Smirnov statistic in the cases tested.
Finkelstein, J. M., Schafer, R. E.
openaire   +2 more sources

Goodness of fit

1987
As before, let ξ1, ..., ξn be univariate independent random variables with the same continuous d.f. F Recall $${\text{D}}_{\text{n}} = \mathop {\sup }\limits_{\text{t}} |{\text{F}}_{\text{n}} \left( {\text{t}} \right) - {\text{F}}\left( {\text{t}} \right)| $$ , the Kolmogorov goodness of fit statistic.
Peter Gaenssler, Winfried Stute
openaire   +1 more source

Smooth Tests of Goodness of Fit

Technometrics, 1991
AbstractSmooth tests of goodness of fit assess the fit of data to a given probability density function within a class of alternatives that differs ‘smoothly’ from the null model. These alternatives are characterized by their order: the greater the order the richer the class of alternatives. The order may be a specified constant, but data‐driven methods
Rayner, J. C. W., Thas, O., Best, D. J.
openaire   +2 more sources

Goodness-of-Fit

1999
Goodness-of-fit tests for continuos distributions are generally handled by the Kolmogorov-Smirnov test which in its classical form requires that the distribution is completely specified. In practice this is seldom the case and one then resorts to estimating parameters from the data and then examining Kolmogorov-Smirnov “type” tests. The standard tables
openaire   +2 more sources

Simulation, Estimation, and Goodness of Fit

2012
Exploring and Relating Model to Data in Practice Previous chapters concentrated on the formulation and specification of exponential random graph models (ERGMs) for different types of relational data. In Chapter 6, we saw that effects represented by configurations and corresponding parameters define a distribution of graphs where the probability of ...
Koskinen, J., Snijders, T.A.B.
openaire   +3 more sources

Goodness-of-Fit

2022
Gábor J. Székely, Maria L. Rizzo
openaire   +2 more sources

Goodness of fit

1996
Abstract Throughout the previous chapters, we have seen various aspects of the model building process. In Chapter 3, we generally assumed that the chosen family of models, 𝒫, was suitable, and studied how to rank the relative merits of different members of that family, whether different functional forms or simply different parameter ...
openaire   +1 more source

Home - About - Disclaimer - Privacy