Results 71 to 80 of about 51,927 (171)

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

The Challenge of Handling Structured Missingness in Integrated Data Sources

open access: yesAdvanced Intelligent Discovery, EarlyView.
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson   +6 more
wiley   +1 more source

Computer Vision Pipeline for Image Analysis for Freeze‐Fracture Electron Microscopy: Rosette Cellulose Synthase Complexes Case

open access: yesAdvanced Intelligent Discovery, EarlyView.
This paper presents a computer vision (deep learning) pipeline integrating YOLOv8 and YOLOv9 for automated detection, segmentation, and analysis of rosette cellulose synthase complexes in freeze‐fracture electron microscopy images. The study explores curated dataset expansion for model improvement and highlights pipeline accuracy, speed ...
Siri Mudunuri   +6 more
wiley   +1 more source

FastCat: Autonomous Discovery of Multielement Layered Double Hydroxide Alloy Catalysts for Alkaline Oxygen Evolution Reaction

open access: yesAdvanced Intelligent Discovery, EarlyView.
A machine learning‐guided self‐driving laboratory screened over 500 nickel‐based layered double‐hydroxide catalysts for alkaline oxygen evolution. Out of the eight metals, the robot uncovered a quaternary Ni–Fe–Cr–Co catalysts requiring only 231 mV overpotential to reach 20 mA cm−2.
Nis Fisker‐Bødker   +3 more
wiley   +1 more source

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Sampling Strategy: An Overlooked Factor Affecting Artificial Intelligence Prediction Accuracy of Peptides’ Physicochemical Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan   +3 more
wiley   +1 more source

Advancing Efficient Error Reduction in DNA Data Storage Systems with Deep Learning‐Based Denoising Models

open access: yesAdvanced Intelligent Discovery, EarlyView.
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo   +5 more
wiley   +1 more source

Average distance between the processors of biswapped networks. [PDF]

open access: yesSci Rep
Prabhu S   +3 more
europepmc   +1 more source

Comparison of DeePMD, MTP, GAP, ACE and MACE Machine‐Learned Potentials for Radiation‐Damage Simulations: A User Perspective

open access: yesAdvanced Intelligent Discovery, EarlyView.
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy