Results 101 to 110 of about 494,151 (223)
Plasmonic hybridization enables control of light emission in 2D van der Waals heterojunctions. By stacking multilayer GaSe and monolayer MoS2 on a silver film, light emission is enhanced at the edges due to plasmonic effects. In the center, where these effects are absent, charge transfer led to reduced light emission.
Jung Ho Kim+5 more
wiley +1 more source
This review provides an in‐depth understanding of all theoretical reaction mechanisms to date concerning zinc–iodine batteries. It revisits the inherent issues and solutions of zinc–iodine batteries from the perspective of industrial application. By integrating existing examples of energy storage applications, it identifies the challenges faced on the ...
Haokun Wen+10 more
wiley +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai+8 more
wiley +1 more source
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab+6 more
wiley +1 more source
In this work, the tandem catalyst consisted of single Fe atom and Fe3C nanoparticles on porous carbon sheet is initially proposed and developed to facilitate the dissociation of Li(solvent)x+ to release more isolated Li+ to participate in the subsequent polysulfide redox conversions by decreasing the related barriers, contributing to fast kinetics of ...
Yuhang Lin+12 more
wiley +1 more source
Unravelling charge transport mechanisms in graphene nanosheet networks: by combining temperature‐dependent conductivity measurements with a Random Resistor Network model, this study identifies a transition from hopping‐dominated conduction to a band‐like transport mechanism.
Alessandro Grillo+9 more
wiley +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source
The coherent heterostructure and the strong stress field at the heterointerface upshift the d‐band center of vanadium toward the Fermi level, which effectively lowers the Na+ diffusion barrier, facilitates charge transfer and accelerates reaction kinetics.
Xuexia Song+11 more
wiley +1 more source