Results 81 to 90 of about 60,665 (288)

Graphene quantum dots

open access: yes, 2021
Carbon nanomaterials offer excellent prospects as therapeutic agents, and among them, graphene quantum dots (GQDs) have gained considerable interest thanks to their aqueous solubility and intrinsic fluorescence, which enable their possible use in theranostic approaches, if their biocompatibility and favorable pharmacokinetic are confirmed.
Hadad, Caroline   +11 more
openaire   +1 more source

Quantum Dots in Graphene [PDF]

open access: yesUniversal Journal of Physics and Application, 2015
The paper reports on theoretical study of electron states for a quantum dot in a graphene monolayer. Discrete energy spectrum of quasiparticles inside the quantum dot is found. Energy levels and corresponding quasiparticle resonant wave functions are obtained, which allow calculating the local density of states inside the quantum dot. Some experimental
openaire   +1 more source

Chaotic Dirac Billiard in Graphene Quantum Dots [PDF]

open access: yesScience, 2008
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers),
Ponomarenko, L. A.   +6 more
openaire   +4 more sources

Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu   +3 more
wiley   +1 more source

Research Update: Beyond graphene—Synthesis of functionalized quantum dots of 2D materials and their applications

open access: yesAPL Materials, 2018
Two-dimensional quantum dots (2D-QDs) are receiving considerable attention for a wide variety of applications in sensing, imaging, therapeutics, catalysis, energy storage, and optoelectronics, among others.
Kevin P. Musselman   +2 more
doaj   +1 more source

Application of Zero-Dimensional Nanomaterials in Biosensing

open access: yesFrontiers in Chemistry, 2020
Zero-dimensional (0D) nanomaterials, including graphene quantum dots (GQDs), carbon quantum dots (CQDs), fullerenes, inorganic quantum dots (QDs), magnetic nanoparticles (MNPs), noble metal nanoparticles, upconversion nanoparticles (UCNPs) and polymer ...
Zhengdi Wang   +3 more
doaj   +1 more source

Etched graphene quantum dots on hexagonal boron nitride [PDF]

open access: yes, 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range.
Engels, S.   +8 more
core   +2 more sources

Cryo‐EM of Rationally Designed Photosystem I Nanoassembly on Graphene Validates Orientation‐Driven Enhancement of Photocatalytic Performance

open access: yesAdvanced Functional Materials, EarlyView.
The first cryo‐EM visualization and quantification of oriented Photosystem I (PSI) on single‐layer graphene is reported. Domain‐specific covalent anchoring of PSI, with the reducing side of the biophotocatalyst toward graphene, promotes three‐fold higher anodic photocurrent generation compared to a randomly physisorbed counterpart. This approach allows
Miriam Izzo   +6 more
wiley   +1 more source

Evidence for formation of multi-quantum dots in hydrogenated graphene. [PDF]

open access: yes, 2012
We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device.
Chen, Tse-Ming   +7 more
core   +3 more sources

Continuous‐Flow Photocatalytic Degradation of Glyphosate and Aminomethylphosphonic Acid Under Simulated Sunlight with TiO2‐Coated Poly(vinylidene fluoride) Membrane

open access: yesAdvanced Functional Materials, EarlyView.
Glyphosate (GLY) and its primary metabolite, aminomethylphosphonic acid (AMPA), are photodegraded using a poly(vinylidene fluoride) membrane with immobilized titanium dioxide (PVDF‐TiO2) in a continuous flow‐through operation under solar light. At optimized conditions, the PVDF‐TiO2 membrane achieved 95% GLY and 80% AMPA removal with •O2− as the ...
Phuong B. Trinh   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy