Results 11 to 20 of about 50,134 (242)
The First Detection of Gravitational Waves
Universe, 2017 This article deals with the first detection of gravitational waves by the advanced Laser Interferometer Gravitational Wave Observatory (LIGO) detectors on 14 September 2015, where the signal was generated by two stellar mass black holes with masses 36 Andrzej Królak, Mandar Patildoaj +3 more sourcesLIGO: the Laser Interferometer Gravitational-Wave Observatory [PDF]
Reports on Progress in Physics, 2009 The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves of astrophysical origin. Direct detection of gravitational waves holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black hole and neutron stars, and of ...Abbott B. P., Abbott R., Adhikari R., Ajith P., Allen B., Allen G., Amin R. S., Anderson S. B., Anderson W. G., Arain M. A., Araya M., Armandula H., Armor P., Aso Y., Aston S., Aufmuth P., Aulbert C., Babak S., Baker P., Ballmer S., Barker C., Barker D., Barr B., Barriga P., Barsotti L., Barton M. A., Bartos I., Bassiri R., Bastarrika M., Behnke B., Benacquista M., Betzwieser J., Beyersdorf P. T., Bilenko I. A., Billingsley G., Biswas R., Black E., Blackburn J. K., Blackburn L., Blair D., Bland B., Bodiya T. P., Bogue L., Bork R., Boschi V., Bose S., Brady P. R., Braginsky V. B., Brau J. E., Bridges D. O., Brinkmann M., Brooks A. F., Brown D. A., Brummit A., Brunet G., Bullington A., Buonanno A., Burmeister O., Byer R. L., Cadonati L., Camp J. B., Cannizzo J., Cannon K. C., Cao J., Cardenas L., Caride S., Castaldi G., Caudill S., Cavaglià M., Cepeda C., Chalermsongsak T., Chalkley E., Charlton P., Chatterji S., Chelkowski S., Chen Y., Christensen N., Chung C. T. Y., Clark D., Clark J., Clayton J. H., Cokelaer T., Colacino C. N., CONTE, ROBERTO, Cook D., Corbitt T. R. C., Cornish N., Coward D., Coyne D. C., Creighton J. D. E., Creighton T. D., Cruise A. M., Culter R. M., Cumming A., Cunningham L., Danilishin S. L., Danzmann K., Daudert B., Davies G., Daw E. J., DeBra D., Degallaix J., Dergachev V., Desai S., DeSalvo R., Dhurandhar S., Díaz M., Dietz A., Donovan F., Dooley K. L., Doomes E. E., Drever R. W. P., Dueck J., Duke I., Dumas J. C., Dwyer J. G., Echols C., Edgar M., Effler A., Ehrens P., Espinoza E., Etzel T., Evans M., Evans T., Fairhurst S., Faltas Y., Fan Y., Fazi D., Fehrmenn H., Finn L. S., Flasch K., Foley S., Forrest C., Fotopoulos N., Franzen A., Frede M., Frei M., Frei Z., Freise A., Frey R., Fricke T., Fritschel P., Frolov V. V., Fyffe M., Galdi V., Garofoli J. A., Gholami I., Giaime J. A., Giampanis S., Giardina K. D., Goda K., Goetz E., Goggin L. M., González G., Gorodetsky M. L., Goßler S., Gouaty R., Grant A., Gras S., Gray C., Gray M., Greenhalgh R. J. S., Gretarsson A. M., Grimaldi F., Grosso R., Grote H., Grunewald S., Guenther M., Gustafson E. K., Gustafson R., Hage B., Hallam J. M., Hammer D., Hammond G. D., Hanna C., Hanson J., Harms J., Harry G. M., Harry I. W., Harstad E. D., Haughian K., Hayama K., Heefner J., Heng I. S., Heptonstall A., Hewitson M., Hild S., Hirose E., Hoak D., Hodge K. A., Holt K., Hosken D. J., Hough J., Hoyland D., Hughey B., Huttner S. H., Ingram D. R., Isogai T., Ito M., Ivanov A., Ju L., Kalmus P., Kandhasamy S., Khalaidovski A., Khan R., Krishnan B., Lam P. K., LONGO, Maurizio, Lucianetti A., Matichard F., McClelland D. E., McKenzie K., Melatos A., Messenger C., Minelli J., Mitselmakher G., Mohanty S. D., Mow Lowry C., Nelson J., Nishizawa A., Numata K., O'Reilly B., O'Shaughnessy R., Ottaway D. J., Owen B. J., Papa M. A., Pierro V., Pinto I. M., Pitkin M., POSTIGLIONE, Fabio, Principe M., Prokhorov L., Quetschke V., Raab F. J., Raymond V., Reitze D. H., Riles K., Santamaría L., Sathyaprakash B. S., Schutz B. F., Scott J., Scott S. M., Shoemaker D. H., Sigg D., Sintes A. M., Slagmolen B. J. J., Somiya K., Sorazu B., Stein L. C., Strain K. A., Stuver A. L., Talukder D., Tanner D. B., Taylor J. R., Tokmakov K. V., van der Sluys M. V., Vecchio A., Veitch J., Ward R. L., Wen L., Wette K., Whelan J. T., Whiting B. F., Willke B., Woan G., Zhao C., Zucker M. E., Zweizig J. +267 more +14 more sourcesA CRYSTAL-BASED MATTER-WAVE INTERFEROMETRIC GRAVITATIONAL-WAVE OBSERVATORY [PDF]
Quantum Aspects of Beam Physics 2003, 2004 It is shown that atom interferometry allows for the construction of MIGO, the Matter-wave Interferometric Gravitational-wave Observatory. MIGOs of the same sensitivity as LIGO or LISA are expected to be orders of magnitude smaller than either one. A design for MIGO using crystalline diffraction gratings is introduced, and its sensitivity is calculated.RAYMOND Y. CHIAO, ACHILLES D. SPELIOTOPOULOS +1 moreopenalex +4 more sourcesConstruction of KAGRA: An underground gravitational-wave observatory [PDF]
Progress of Theoretical and Experimental Physics, 2018 Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface.T. Akutsu, Masaki Ando, S. Araki, A. Araya, Tsukasa Arima, N. Aritomi, Hideki Asada, Y. Aso, S. Atsuta, K. Awai, Luca Baiotti, M. A. Barton, D. Chen, K. Cho, K. Craig, R. DeSalvo, Katsumi Doi, Kazunari Eda, Yutaro Enomoto, R. Flaminio, Sho Fujibayashi, Yoshinori Fujii, Masa‐Katsu Fujimoto, Mitsuhiro Fukushima, T Furuhata, Masatoshi Hagiwara, S. Haino, S. Harita, K. Hasegawa, M. Hasegawa, Katsuya Hashino, K. Hayama, N. Hirata, Eiichi Hirose, B. Ikenoue, Yuki Inoue, Kunihito Ioka, Hideharu Ishizaki, Y. Itoh, Dongbao Jia, T. Kagawa, T. Kaji, T. Kajita, M. Kakizaki, Hiroshi Kakuhata, M. Kamiizumi, Shunsuke Kanbara, Nobuyuki Kanda, Shinya Kanemura, Masato Kaneyama, J Kasuya, Y. Kataoka, Kyohei Kawaguchi, N. Kawai, Seiji Kawamura, F. Kawazoe, C. Kim, J. Kim, J. C. Kim, Won-Seok Kim, N. Kimura, Y. Kitaoka, Kazuyoshi Kobayashi, Y. Kojima, K. Kokeyama, K. Komori, Kei Kotake, Kiyokazu Kubo, Rakesh Kumar, Tatsuya Kume, K. Kuroda, Yuya Kuwahara, H. K. Lee, H. W. Lee, Chun-Yu Lin, Yingtao Liu, E. Majorana, Shuhei Mano, M. Marchio, Toshinori Matsui, Nobuyuki Matsumoto, Fusakazu Matsushima, Yuta Michimura, N. Mio, O. Miyakawa, Kyohei Miyake, A. Miyamoto, Takuya Miyamoto, K. Miyo, S. Miyoki, W. Morii, S. Morisaki, Y. Moriwaki, Y. Muraki, M. Murakoshi, M. Musha, K Nagano, S. Nagano, K. Nakamura, Takashi Nakamura +99 moreopenalex +6 more sourcesSpace-Based Gravitational WaveObservatories [PDF]
, 2021 In this article, which will appear as a chapter in the Handbook of Gravitational Wave Astronomy, we will describe the detection of gravitational waves with space-based interferometric gravitational wave observatories. We will provide an overview of the key technologies underlying their operation, illustrated using the specific example of the Laser ...Gair, J., Hewitson, M., Petiteau, A., Müller, G. +3 moreopenaire +3 more sourcesQuantum expander for gravitational-wave observatories [PDF]
Light: Science & Applications, 2019 AbstractThe quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years, techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical resonators have been invented.Mikhail Korobko, Yiqiu Ma, Yanbei Chen, Roman Schnabel +3 moreopenaire +4 more sources