Results 11 to 20 of about 3,724 (168)

Potential Theory on Gromov Hyperbolic Spaces [PDF]

open access: greenAnalysis and Geometry in Metric Spaces, 2022
Abstract Gromov hyperbolic spaces have become an essential concept in geometry, topology and group theory. Herewe extend Ancona’s potential theory on Gromov hyperbolic manifolds and graphs of bounded geometry to a large class of Schrödinger operators on Gromov hyperbolic metric measure spaces, unifying these settings in a common ...
Matthias Kemper, Joachim Lohkamp
openalex   +5 more sources

Worm Domains are not Gromov Hyperbolic. [PDF]

open access: yesJ Geom Anal, 2023
AbstractWe show that Worm domains are not Gromov hyperbolic with respect to the Kobayashi distance.
Arosio L, Dall'Ara GM, Fiacchi M.
europepmc   +6 more sources

Subelliptic estimates from Gromov hyperbolicity [PDF]

open access: greenAdvances in Mathematics, 2022
73 pages.
Andrew Zimmer
openalex   +3 more sources

Gromov hyperbolicity of minor graphs [PDF]

open access: green, 2015
If $X$ is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $ $-hyperbolic (in the Gromov sense) if any side of $T$ is contained in a $ $-neighborhood of the union of the two other sides, for every geodesic triangle
Walter Carballosa   +3 more
openalex   +3 more sources

Teichmuller Space is Not Gromov Hyperbolic [PDF]

open access: green, 1994
We prove that the Teichmuller Space of Riemann Surfaces of genus g>1, equipped with the Teichmuller metric, is not a Gromov Hyperbolic space.
Howard Masur, Michael Wolf
openalex   +5 more sources

Knot graphs and Gromov hyperbolicity [PDF]

open access: yesMathematische Zeitschrift, 2022
We define a broad class of graphs that generalize the Gordian graph of knots. These knot graphs take into account unknotting operations, the concordance relation, and equivalence relations generated by knot invariants. We prove that overwhelmingly, the knot graphs are not Gromov hyperbolic, with the exception of a particular family of quotient knot ...
Stanislav Jabuka   +2 more
openaire   +3 more sources

Gromov Hyperbolicity in Directed Graphs [PDF]

open access: yesSymmetry, 2020
In this paper, we generalize the classical definition of Gromov hyperbolicity to the context of directed graphs and we extend one of the main results of the theory: the equivalence of the Gromov hyperbolicity and the geodesic stability. This theorem has potential applications to the development of solutions for secure data transfer on the internet.
Ana Portilla   +3 more
openaire   +3 more sources

Bounds on Gromov hyperbolicity constant [PDF]

open access: yesRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015
If $X$ is a geodesic metric space and $x_{1},x_{2},x_{3} \in X$, a geodesic triangle $T=\{x_{1},x_{2},x_{3}\}$ is the union of the three geodesics $[x_{1}x_{2}]$, $[x_{2}x_{3}]$ and $[x_{3}x_{1}]$ in $X$. The space $X$ is $ $-hyperbolic in the Gromov sense if any side of $T$ is contained in a $ $-neighborhood of the union of the two other sides, for ...
Hernández, Verónica   +2 more
openaire   +8 more sources

Gromov hyperbolicity of planar graphs

open access: yesOpen Mathematics, 2013
AbstractWe prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this ...
Cantón Alicia   +3 more
doaj   +3 more sources

Gromov hyperbolic graphs arising from iterations [PDF]

open access: yesAdvances in Mathematics, 2021
For a contractive iterated function system (IFS), it is known that there is a natural hyperbolic graph structure (augmented tree) on the symbolic space of the IFS that reflects the relationship among neighboring cells, and its hyperbolic boundary with the Gromov metric is H lder equivalent to the attractor $K$.
Kong, Shilei   +2 more
openaire   +4 more sources

Home - About - Disclaimer - Privacy