Results 21 to 30 of about 6,390 (190)
Conjugacy of Carter Subgroups in Groups of finite Morley Rank [PDF]
The Cherlin–Zil'ber Conjecture states that all simple groups of finite Morley rank are algebraic. We prove that any minimal counterexample to this conjecture has a unique conjugacy class of Carter subgroups, which are analogous to Cartan subgroups in algebraic groups.
Olivier Frécon
semanticscholar +2 more sources
Unipotence in positive characteristic for groups of finite Morley rank
: In this article we define a new form of unipotence in groups of finite Morley rank which extends Burdges unipotence to any characteristic. In particular, we show that every connected solvable group of finite Morley rank G has a definable connected subgroup
Jules Tindzogho Ntsiri
semanticscholar +3 more sources
Splitting in solvable groups of finite Morley rank
We exhibit counterexamples to a Conjecture of Nesin, since we build a connected solvable group with finite center and of finite Morley rank in which no normal nilpotent subgroup has a nilpotent complement. The main result says that each centerless connected solvable group G of finite Morley has a normal nilpotent subgroup U and an abelian subgroup T ...
Olivier Frécon
doaj +2 more sources
Automorphism groups of small simple groups of finite Morley rank [PDF]
IfGGis a minimal connected simple group of finite Morley rank with a nontrivial Weyl group, then its connected definable automorphism groups are inner.
Olivier Frécon
openalex +3 more sources
Groups of Finite Morley Rank with Solvable Local Subgroups [PDF]
We lay down the fundations of the theory of groups of finite Morley rank in which local subgroups are solvable and we proceed to the local analysis of these groups. We prove the main Uniqueness Theorem, analogous to the Bender method in finite group theory, and derive its corollaries. We also consider homogeneous cases as well as torsion.
Adrien Deloro, Éric Jaligot
openalex +4 more sources
On Weyl groups in minimal simple groups of finite Morley rank [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
T. Altinel +2 more
semanticscholar +3 more sources
Uniqueness cases in odd‐type groups of finite Morley rank [PDF]
There is a longstanding conjecture, due to Gregory Cherlin and Boris Zilber, that all simple groups of finite Morley rank are simple algebraic groups. One of the major theorems in the area is Borovik's trichotomy theorem.
A. Borovik, Jeffrey Burdges, Ali Nesin
semanticscholar +3 more sources
Signalizers and balance in groups of finite Morley rank [PDF]
We show that a minimal counter example to the Cherlin-Zilber Algebraicity Conjecture for simple groups of finite Morley rank has Prufer 2-rank at most two. This article covers the signalizer functor theory and identifies the groups of Lie rank at least three; leaving the uniqueness case analysis to previous articles.
Jeffrey Burdges
openalex +3 more sources
Tame minimal simple groups of finite Morley rank
The paper is a contribution to the program aiming to prove the Cherlin-Zil'ber algebraicity conjecture: any infinite simple group of finite Morley rank is an algebraic group over an algebraically closed field. A group of finite Morley rank is said to be tame if does not interpret a bad field naturally.
G. Cherlin, E. Jaligot
semanticscholar +2 more sources
Groups of Finite Morley Rank with Strongly Embedded Subgroups
The paper deals with the Cherlin-Zil'ber conjecture, the central problem in the area of groups of finite Morley rank. (The state of the art has been presented in the book of \textit{A. Borovik} and \textit{A. Nesin} [Groups of finite Morley rank, Clarendon Press, Oxford (1994; Zbl 0816.20001)].) The conjecture states that any infinite simple group of ...
T. Altinel
semanticscholar +2 more sources

