Results 81 to 90 of about 27,878 (202)
On the Hermite-Hadamard type inequalities [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Zhao, Chang-Jian +2 more
openaire +4 more sources
The Functional Delta Method for Deriving Asymptotic Distributions
The distribution of the scaled difference between the plug‐in estimator Tθ̂n$$ T\left({\hat{\boldsymbol{\theta}}}_n\right) $$ and the true parameter Tθ0$$ T\left({\boldsymbol{\theta}}_0\right) $$ is approximated by the distribution of the scaled difference between θ̂n$$ {\hat{\boldsymbol{\theta}}}_n $$ and θ0$$ {\boldsymbol{\theta}}_0 $$ and a ...
Eric Beutner
wiley +1 more source
New estimates for Hermite–Hadamard–Fejer-type inequalities containing Raina fractional integrals
The Hermite–Hadamard–Fejér-type inequality is an effective utensil for examining upper and lower estimations of the integrals of convex functions. In this study, the power mean inequality and Hölder inequality are employed.
Maria Tariq +3 more
doaj +1 more source
Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus
The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval $ [\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $, we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its ...
Saad Ihsan Butt +3 more
doaj +1 more source
Some Further Results Using Green’s Function for s-Convexity
For s-convex functions, the Hermite–Hadamard inequality is already well-known in convex analysis. In this regard, this work presents new inequalities associated with the left-hand side of the Hermite–Hadamard inequality for s-convexity by utilizing a ...
Çetin Yildiz +3 more
doaj +1 more source
Mean curvature and compactification of surfaces in a negatively curved Cartan-Hadamard manifold [PDF]
We state and prove a Chern-Osserman-type inequality in terms of the volume growth for complete surfaces with controlled mean curvature properly immersed in a Cartan-Hadamard manifold $N$ with sectional curvatures bounded from above by a negative quantity
Esteve, Antonio, Palmer, Vicente
core
Variable selection via thresholding
Abstract Variable selection comprises an important step in many modern statistical inference procedures. In the regression setting, when estimators cannot shrink irrelevant signals to zero, covariates without relationships to the response often manifest small but nonzero regression coefficients.
Ka Long Keith Ho, Hien Duy Nguyen
wiley +1 more source
On Upper Estimations of Hermite–Hadamard Inequalities
Convex functions play a key role in many branches of pure and applied mathematics. In this paper, we prove that if a convex function is not continuous, then the classical Hermite–Hadamard inequality, the Hermite–Hadamard inequality for the Riemann ...
Yasin Kaya
doaj +1 more source
We obtain some Hermite-Hadamard type inequalities for s-convex functions on the coordinates via Riemann-Liouville integrals. Some integral inequalities with the right-hand side of the fractional Hermite-Hadamard type inequality are also established.
Feixiang Chen
doaj +1 more source
Refinements of the Hermite-Hadamard Integral Inequality for Log-Convex Functions [PDF]
Two refinements of the classical Hermite-Hadamard integral inequality for log-convex functions and applications for special means are ...
Dragomir, Sever S
core

