Results 81 to 90 of about 76,992 (320)

Computational Modeling of Reticular Materials: The Past, the Present, and the Future

open access: yesAdvanced Materials, EarlyView.
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman   +3 more
wiley   +1 more source

Quantitative Small Subgraph Conditioning [PDF]

open access: yes, 2015
We revisit the method of small subgraph conditioning, used to establish that random regular graphs are Hamiltonian a.a.s. We refine this method using new technical machinery for random $d$-regular graphs on $n$ vertices that hold not just asymptotically,
Johnson, Tobias, Paquette, Elliot
core  

On the number of Hamiltonian cycles in tournaments

open access: yesDiscrete Mathematics, 1980
AbstractThe main results assert that the minimum number of Hamiltonian bypasses in a strong tournament of order n and the minimum number of Hamiltonian cycles in a 2-connected tournament of order n increase exponentially with n. Furthermore, the number of Hamiltonian cycles in a tournament increases at least exponentially with the minimum outdegree of ...
openaire   +3 more sources

Li‐Well ZnO Memtransistors: High Reliability for Neuromorphic Applications

open access: yesAdvanced Materials, EarlyView.
A novel lithium (Li)‐well ZnO memtransistor integrates transistor switching and nonvolatile memory, akin to ferroelectric field‐effect transistors (FeFETs) and floating gates, while enabling low‐power operation via Li⁺ ion migration. Li⁺ ion migration and switching mechanisms were confirmed by 3D secondary ion mass spectrometry (SIMS).
Ki‐Hoon Son   +4 more
wiley   +1 more source

Local properties of graphs that induce global cycle properties [PDF]

open access: yesOpuscula Mathematica
A graph \(G\) is locally Hamiltonian if \(G[N(v)]\) is Hamiltonian for every vertex \(v\in V(G)\). In this note, we prove that every locally Hamiltonian graph with maximum degree at least \(|V(G)| - 7\) is weakly pancyclic.
Yanyan Wang, Xiaojing Yang
doaj   +1 more source

Strain Engineering of Magnetoresistance and Magnetic Anisotropy in CrSBr

open access: yesAdvanced Materials, EarlyView.
Biaxial compressive strain significantly enhances magnetoresistance and critical saturation fields in thin flakes of the 2D magnet CrSBr, along all three crystallographic axes. First‐principles calculations link these effects to strain‐induced increases in exchange interactions and magnetic anisotropy.
Eudomar Henríquez‐Guerra   +19 more
wiley   +1 more source

On hamiltonian chain saturated uniform hypergraphs [PDF]

open access: yesDiscrete Mathematics & Theoretical Computer Science, 2012
Graphs and ...
Aneta Dudek, Andrzej Zak
doaj   +1 more source

Artificial Intelligence‐Assisted Workflow for Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling

open access: yesAdvanced Materials, EarlyView.
AI‐Assisted Workflow for (Scanning) Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling. Abstract (Scanning) transmission electron microscopy ((S)TEM) has significantly advanced materials science but faces challenges in correlating precise atomic structure information with the functional properties of ...
Marc Botifoll   +19 more
wiley   +1 more source

On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs [PDF]

open access: yesDiscrete Mathematics & Theoretical Computer Science, 2014
Graph ...
Christian Löwenstein   +2 more
doaj   +1 more source

On pedigree polytopes and Hamiltonian cycles

open access: yesDiscrete Mathematics, 2003
AbstractIn this paper we define a combinatorial object called a pedigree, and study the corresponding polytope, called the pedigree polytope. Pedigrees are in one-to-one correspondence with the Hamiltonian cycles on Kn. Interestingly, the pedigree polytope seems to differ from the standard tour polytope, Qn with respect to the complexity of testing ...
openaire   +4 more sources

Home - About - Disclaimer - Privacy