Results 11 to 20 of about 2,343 (229)
New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function
In 2003, Mercer presented an interesting variation of Jensen’s inequality called Jensen–Mercer inequality for convex function. In the present paper, by employing harmonically convex function, we introduce analogous versions of Hermite–Hadamard ...
Saad Ihsan Butt +4 more
doaj +1 more source
A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators
A review of the results on the fractional Fejér-type inequalities, associated with different families of convexities and different kinds of fractional integrals, is presented.
Muhammad Tariq +2 more
doaj +1 more source
The purpose of this study is to define a new class of harmonically convex functions, which is known as left and right harmonically convex interval-valued function (LR-𝓗-convex IV-F), and to establish novel inclusions for a newly defined class of interval-
Muhammad Bilal Khan +4 more
doaj +1 more source
In this paper, we define a new function, namely, harmonically α,h−m-convex function, which unifies various kinds of harmonically convex functions.
Chahn Yong Jung +4 more
doaj +1 more source
The aim of this paper is to establish new generalized fractional versions of the Hadamard and the Fejér–Hadamard integral inequalities for harmonically convex functions.
Xiaoli Qiang +4 more
doaj +1 more source
There are many benefits derived from the speculation regarding convexity in the fields of applied and pure science. According to their definitions, convexity and integral inequality are linked concepts.
Waqar Afzal +3 more
doaj +1 more source
Convexity In Multivalued Harmonic Functions
We investigate variants of a Three Circles type Theorem in the context of \mathcal{Q}-valued functions. We prove some convexity inequalities related to the L^{2} growth function in the \mathcal{Q}-valued settings. Optimality of these inequalities and comparsion to the case of real valued harmonic functions is also discussed.
openaire +3 more sources
In the frame of fractional calculus, the term convexity is primarily utilized to address several challenges in both pure and applied research. The main focus and objective of this review paper is to present Hermite–Hadamard (H-H)-type inequalities ...
Muhammad Tariq +2 more
doaj +1 more source
Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator.
Saima Rashid +3 more
doaj +1 more source
New fractional approaches for n-polynomial P-convexity with applications in special function theory
Inequality theory provides a significant mechanism for managing symmetrical aspects in real-life circumstances. The renowned distinguishing feature of integral inequalities and fractional calculus has a solid possibility to regulate continuous issues ...
Shu-Bo Chen +4 more
doaj +1 more source

