Results 91 to 100 of about 65,125 (273)
On the Billingsley dimension of Birkhoff average in the countable symbolic space
We compute a lower bound of Billingsley–Hausdorff dimension, defined by Gibbs measure, of the level set related to Birkhoff average in the countable symbolic space $\mathbb{N}^{\mathbb{N}}$.
Attia, Najmeddine, Selmi, Bilel
doaj +1 more source
A. Baker's conjecture and Hausdorff dimension
Let \(M_n(\varepsilon)\) (for \(n\in \mathbb N\) and for \(\varepsilon >0\)) denote the set of \(x\in \mathbb R\) such that the inequality \[ |P(x)|
Beresnevich, V., Bernik, V.
openaire +3 more sources
ABSTRACT Monge–Ampère equations (MAEs) are fully nonlinear second‐order partial differential equations (PDEs), which are closely related to various fields including optimal transport (OT) theory, geometrical optics and affine geometry. Despite their significance, MAEs are extremely challenging to solve.
Xinghua Pan, Zexin Feng, Kang Yang
wiley +1 more source
Hausdorff–Lebesgue Dimension of Attractors [PDF]
Definitions of Hausdorff–Lebesgue measure and dimension are introduced. Combination of Hausdorff and Lebesgue ideas are used. Methods for upper and lower estimations of attractor dimensions are developed.
openaire +4 more sources
Limit Orders and Knightian Uncertainty
ABSTRACT A wide variety of financial instruments allows risk‐averse traders to reduce their exposure to risk. This raises the question of what financial instruments allow ambiguity‐averse traders to reduce their exposure to ambiguity. We show in this paper that price‐contingent orders, such as limit orders, are sufficient: In a two‐period trading model,
Michael Greinecker, Christoph Kuzmics
wiley +1 more source
Abstract In the domain of battery research, the processing of high‐resolution microscopy images is a challenging task, as it involves dealing with complex images and requires a prior understanding of the components involved. The utilisation of deep learning methodologies for image analysis has attracted considerable interest in recent years, with ...
Ganesh Raghavendran +7 more
wiley +1 more source
Singular dimension of spaces of real functions
Let X be a space of measurable real functions defined on a fixed open set Ω ⊆ R^N . It is natural to define the singular dimension of X as the supremum of Hausdorff dimension of singular sets of all functions in X.We say that f ∈ X is a maximally ...
Darko Žubrinić
doaj
The Hausdorff dimension of the visible sets of connected compact sets
For a compact subset K of the plane and a point x, we define the visible part of K from x to be the set K_x={u\in K : [x,u]\cap K={u}}. (Here [x,u] denotes the closed line segment joining x to u.) In this paper, we use energies to show that if K is a ...
O'Neil, Toby C
core +4 more sources
Dynamically Consistent Analysis of Realized Covariations in Term Structure Models
ABSTRACT In this article, we show how to analyze the covariation of bond prices nonparametrically and robustly, staying consistent with a general no‐arbitrage setting. This is, in particular, motivated by the problem of identifying the number of statistically relevant factors in the bond market under minimal conditions.
Dennis Schroers
wiley +1 more source
Generalized Dimensions of Self-Affine Sets with Overlaps
Two decades ago, Ngai and Wang introduced a well-known finite type condition (FTC) on the self-similar iterated function system (IFS) with overlaps and used it to calculate the Hausdorff dimension of self-similar sets. In this paper, inspired by Ngai and
Guanzhong Ma, Jun Luo, Xiao Zhou
doaj +1 more source

