Results 31 to 40 of about 72,312 (306)
ON THE HAUSDORFF MEASURE OF CERTAIN PLANE SET PROJECTIONS
A characterization of plane sets whose projection have zero Hausdorff measure is given. This is obtained through the study of an angular density introduced first by Marstrand [2].
Carlos Arnoldo Morales Rojas
doaj +1 more source
An evaluation of performance measures for arterial brain vessel segmentation
Background Arterial brain vessel segmentation allows utilising clinically relevant information contained within the cerebral vascular tree. Currently, however, no standardised performance measure is available to evaluate the quality of cerebral vessel ...
Orhun Utku Aydin +7 more
doaj +1 more source
Dimensions and singular traces for spectral triples, with applications to fractals [PDF]
Given a spectral triple (A,D,H), the functionals on A of the form a -> tau_omega(a|D|^(-t)) are studied, where tau_omega is a singular trace, and omega is a generalised limit.
Guido, Daniele, Isola, Tommaso
core +3 more sources
Fourier transforms of Gibbs measures for the Gauss map [PDF]
We investigate under which conditions a given invariant measure $\mu$ for the dynamical system defined by the Gauss map $x \mapsto 1/x \mod 1$ is a Rajchman measure with polynomially decaying Fourier transform $$|\widehat{\mu}(\xi)| = O(|\xi|^{-\eta ...
Jordan, Thomas, Sahlsten, Tuomas
core +4 more sources
Attractors of directed graph IFSs that are not standard IFS attractors and their Hausdorff measure [PDF]
For directed graph iterated function systems (IFSs) defined on R, we prove that a class of 2-vertex directed graph IFSs have attractors that cannot be the attractors of standard (1-vertex directed graph) IFSs, with or without separation conditions.
Barnsley +7 more
core +4 more sources
Hausdorff Dimension and Topological Entropies of a Solenoid
The purpose of this paper is to elucidate the interrelations between three essentially different concepts: solenoids, topological entropy, and Hausdorff dimension.
Andrzej Biś, Agnieszka Namiecińska
doaj +1 more source
Spaces of non-additive measures generated by triangular norms
We consider non-additive measures on the compact Hausdorff spaces, which are generalizations of the idempotent measures and max-min measures. These measures are related to the continuous triangular norms and they are defined as functionals on the spaces ...
Kh. Sukhorukova
doaj +1 more source
Iterated Function Systems in Mixed Euclidean and p-adic Spaces
We investigate graph-directed iterated function systems in mixed Euclidean and p-adic spaces. Hausdorff measure and Hausdorff dimension in such spaces are defined, and an upper bound for the Hausdorff dimension is obtained.
Sing, Bernd
core +2 more sources
Hausdorff measures and KMS states [PDF]
18 pages, 1 ...
Ionescu, Marius, Kumjian, Alex
openaire +2 more sources
Singularities of the divergence of continuous vector fields and uniform Hausdorff estimates
We prove that every closed set which is not sigma-finite with respect to the Hausdorff measure H^{N-1} carries singularities of continuous vector fields in the Euclidean space R^N for the divergence operator.
Ponce, Augusto C.
core +1 more source

