Results 1 to 10 of about 92,619 (185)
Continuous images of Cantor's ternary set
The Hausdorff-Alexandroff Theorem states that any compact metric space is the continuous image of Cantor's ternary set $C$. It is well known that there are compact Hausdorff spaces of cardinality equal to that of $C$ that are not continuous images of ...
Dreher, Fabian, Samuel, Tony
core +1 more source
Embedding into discretely absolutely star-Lindelöf spaces II
A space X is discretely absolutely star-Lindelöf if for every open cover U of X and every dense subset D of X, there exists a countable subset F of D such that F is discrete closed in X and St(F, U) = X, where St(F, U) = S{U ∈ U : U ∩F 6= Ø}.
Yan-Kui Song
doaj +1 more source
Hausdorff operators on homogeneous spaces of locally compact groups
Hausdorff operators on the real line and multidimensional Euclidean spaces originated from some classical summation methods. Now it is an active research area. Hausdorff operators on general groups were defined and studied by the author since 2019.
Adolf R. Mirotin
doaj +1 more source
$G_\delta$-topology and compact cardinals
For a topological space $X$, let $X_\delta$ be the space $X$ with $G_\delta$-topology of $X$. For an uncountable cardinal $\kappa$, we prove that the following are equivalent: (1) $\kappa$ is $\omega_1$-strongly compact.
Usuba, Toshimichi
core +1 more source
A Note on Topological Properties of Non-Hausdorff Manifolds
The notion of compatible apparition points is introduced for non-Hausdorff manifolds, and properties of these points are studied. It is well known that the Hausdorff property is independent of the other conditions given in the standard definition of a ...
Steven L. Kent +2 more
doaj +1 more source
Locally rich compact sets [PDF]
We construct a compact metric space that has any other compact metric space as a tangent, with respect to the Gromov-Hausdorff distance, at all points. Furthermore, we give examples of compact sets in the Euclidean unit cube, that have almost any other ...
Chen, Changhao, Rossi, Eino
core +1 more source
Almost periodic functions on Hausdorff almost periodic time scales
This paper is devoted to generalizing the notion of almost periodic functions on time scales. We introduce a new class of almost periodic time scales called Hausdorff almost periodic time scales by using the Hausdorff distance and propose a more general ...
Desheng Ji, Liu Yang, Jimin Zhang
doaj +1 more source
Compact self T1-complementary spaces without isolated points
We present an example of a compact Hausdorff self T1-complementary space without isolated points. This answers Question 3.11 from [A compact Hausdorff topology that is a T1-complementof itself, Fund. Math. 175 (2002), 163–173] affirmatively.
Mikhail Tkachenko
doaj +1 more source
Inverse topology in MV-algebras [PDF]
We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely ${\rm Min}(A)$, with the inverse topology is a compact space, Hausdorff, $T_0$-space and $T_1 ...
Fereshteh Forouzesh +2 more
doaj +1 more source
Upper bounds of some matrix operators on binomial and Orlicz-binomial double sequence spaces
In this article, we introduce binomial double sequence space bk(α,β;γ,δ) (1≤k≤∞) and Orlicz-binomial double sequence space bφ(α,β;γ,δ), and obtain certain inclusion results related to these spaces.
Taja Yaying, Bipan Hazarika
doaj +1 more source

