Results 141 to 150 of about 1,827,651 (303)

Lethal Hazards of the Luteal Phase of the Menstrual Cycle [PDF]

open access: green, 1959
I. L. MacKinnon   +2 more
openalex   +1 more source

Classification of acute myeloid leukemia based on multi‐omics and prognosis prediction value

open access: yesMolecular Oncology, EarlyView.
The Unsupervised AML Multi‐Omics Classification System (UAMOCS) integrates genomic, methylation, and transcriptomic data to categorize AML patients into three subtypes (UAMOCS1‐3). This classification reveals clinical relevance, highlighting immune and chromosomal characteristics, prognosis, and therapeutic vulnerabilities.
Yang Song   +13 more
wiley   +1 more source

Causal Inference in the Multiverse of Hazard [PDF]

open access: yesarXiv
Hazard serves as a pivotal estimand in both practical applications and methodological frameworks. However, its causal interpretation poses notable challenges, including inherent selection biases and ill-defined populations to be compared between different treatment groups.
arxiv  

Adverse prognosis gene expression patterns in metastatic castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
We aggregated a cohort of 1012 mCRPC tissue samples from 769 patients and investigated the association of gene expression‐based pathways with clinical outcomes. Loss of AR signaling, high proliferation, and a glycolytic phenotype were independently prognostic for poor outcomes, and an adverse transcriptional feature score incorporating these pathways ...
Marina N. Sharifi   +26 more
wiley   +1 more source

Relative Survival Analysis Using Bayesian Decision Tree Ensembles [PDF]

open access: yesarXiv
In cancer epidemiology, the \emph{relative survival framework} is used to quantify the hazard associated with cancer by comparing the all-cause mortality hazard in cancer patients to that of the general population. This framework assumes that an individual's hazard function is the sum of a known population hazard and an excess hazard associated with ...
arxiv  

TOMM20 as a driver of cancer aggressiveness via oxidative phosphorylation, maintenance of a reduced state, and resistance to apoptosis

open access: yesMolecular Oncology, EarlyView.
TOMM20 increases cancer aggressiveness by maintaining a reduced state with increased NADH and NADPH levels, oxidative phosphorylation (OXPHOS), and apoptosis resistance while reducing reactive oxygen species (ROS) levels. Conversely, CRISPR‐Cas9 knockdown of TOMM20 alters these cancer‐aggressive traits.
Ranakul Islam   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy