Results 171 to 180 of about 582,179 (337)

Exploring Quantum Support Vector Regression for Predicting Hydrogen Storage Capacity of Nanoporous Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this study we employed support vector regressor and quantum support vector regressor to predict the hydrogen storage capacity of metal–organic frameworks using structural and physicochemical descriptors. This study presents a comparative analysis of classical support vector regression (SVR) and quantum support vector regression (QSVR) in predicting ...
Chandra Chowdhury
wiley   +1 more source

Technological Ecosystems in Health Informatics: A Brief Review Article

open access: yesIranian Journal of Public Health, 2016
Background: The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which ...
Zhongmei WU   +3 more
doaj  

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

The Scope and Direction of Health Informatics [PDF]

open access: yes
Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management.
McGinnis, Patrick J.
core   +1 more source

Named Entity Recognition Models for Machine Learning Interatomic Potentials: A User‐Centric Approach to Knowledge Extraction from Scientific Literature

open access: yesAdvanced Intelligent Discovery, EarlyView.
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley   +1 more source

opXRD: Open Experimental Powder X‐Ray Diffraction Database

open access: yesAdvanced Intelligent Discovery, EarlyView.
We introduce the Open Experimental Powder X‐ray Diffraction Database, the largest openly accessible collection of experimental powder diffractograms, comprising over 92,000 patterns collected across diverse material classes and experimental setups. Our ongoing effort aims to guide machine learning research toward fully automated analysis of pXRD data ...
Daniel Hollarek   +23 more
wiley   +1 more source

Integrating data analytics into health informatics: Advancing equity, pharmaceutical outcomes, and public health decision-making

open access: diamond
Md. Majedur Rahman   +6 more
openalex   +1 more source

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy