Results 251 to 260 of about 3,266,701 (358)

Targeting the Mapk13‐Tcf1‐Slc7a5 Axis via One‐Carbon Metabolic Regulation to Prevent Chronic Allograft Vasculopathy

open access: yesAdvanced Science, EarlyView.
This study emphasizes the role of the Mapk13‐Tcf1‐Slc7a5‐methionine metabolism axis in stem‐like CD4+ T cells. Moreover, it uncovers the mechanism through which limiting one‐carbon metabolism in CD4+ stem‐like T cells suppresses the tide of chronic allograft vasculopathy, offering potential targets to promote long‐term graft survival.
Wang Yi   +8 more
wiley   +1 more source

Persistent Left Superior Vena Cava in Heart Transplantation. [PDF]

open access: yesJACC Case Rep
Burmistrova M, Effiom VB, Kilic A.
europepmc   +1 more source

Photoacoustic Microscopy for Multiscale Biological System Visualization and Clinical Translation

open access: yesAdvanced Science, EarlyView.
Photoacoustic microscopy (PAM) is a powerful biomedical imaging tool renowned for its non‐invasiveness and high resolution. This review synthesizes recent technological advances and highlights their broad applications from cellular and organ‐level to whole‐animal imaging.
Tingting Wang   +3 more
wiley   +1 more source

Long-Term Outcome of Myocardial Protection in Heart Transplantation: Comparison Among 3 Different Solutions. [PDF]

open access: yesInterdiscip Cardiovasc Thorac Surg
Settepani F   +6 more
europepmc   +1 more source

A Subset of Pro‐inflammatory CXCL10+ LILRB2+ Macrophages Derives From Recipient Monocytes and Drives Renal Allograft Rejection

open access: yesAdvanced Science, EarlyView.
This study uncovers a recipient‐derived monocyte‐to‐macrophage trajectory that drives inflammation during kidney transplant rejection. Using over 150 000 single‐cell profiles and more than 850 biopsies, the authors identify CXCL10+ macrophages as key predictors of graft loss.
Alexis Varin   +16 more
wiley   +1 more source

TRIM40 Drives Pathological Cardiac Hypertrophy and Heart Failure via Ubiquitination of PKN2

open access: yesAdvanced Science, EarlyView.
This study identifies the E3 ligase TRIM40 as a key driver of pathological cardiac hypertrophy. TRIM40 binds PKN2 via its B‐box domain and, through its C29‐dependent catalytic activity, mediates K63‐linked ubiquitination of PKN2. This modification enhances PKN2 phosphorylation at Ser815, thereby driving hypertrophy.
Risheng Zhao   +12 more
wiley   +1 more source

NHS blood and transplant donor echocardiography standard to improve organ utilisation in heart transplantation. [PDF]

open access: yesJ Intensive Care Soc
Akhtar W   +9 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy