Results 121 to 130 of about 35,380 (259)
Apatite occurs in many forms in nature, e.g. in teeth and geological minerals. Internally, biological apatite contains nanocrystals that are also found in synthetically prepared calcium phosphate nanoparticles which are used in biomedicine, e.g. for gene and drug delivery and for bone regeneration. Abstract Calcium phosphate is the inorganic component (
Kathrin Kostka +3 more
wiley +1 more source
Net emission reductions from electric cars and heat pumps in 59 world regions over time. [PDF]
Knobloch F +7 more
europepmc +1 more source
Controlled laser‐drilling of embedded HfO2 membranes creates three layer nanopores with Gaussian‐shaped cavities sculptured in the supporting layers. These embedded solid‐state nanopores slow DNA translocation by 12‐fold compared to SiNx pores, enabling high‐resolution, label‐free detection of short DNAs, RNAs, and proteins.
Jostine Joby +4 more
wiley +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
Molar Heat Capacity for Graphical Pedagogy Applied to Heat Engines, Refrigerators, and Heat Pumps Driven by Chemical Change. [PDF]
Martin ST.
europepmc +1 more source
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli +6 more
wiley +1 more source
Cavitation noise suppression in automotive heat pumps via vapor-doped supercavitation. [PDF]
Hu L +6 more
europepmc +1 more source
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source
One Mixture to Rule Them All: Enhancing Efficiency and Standardization of Industrial High-Temperature Heat Pumps. [PDF]
Widmaier P +4 more
europepmc +1 more source

