Results 191 to 200 of about 4,568,406 (389)
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana+2 more
wiley +1 more source
Compositing Effect Leads to Extraordinary Performance in GeSe‐Based Thermoelectrics
Rhombohedral GeSe is rationally designed with (GeSe)0.9(AgBiTe2)0.1‐1.5 mol.% SnSe, achieving a peak ZT of 1.31 at 623 K. Forming a composite with SnSe establishes interfaces with strong phonon scattering and weak electron scattering. Multiscale defects lead to an ultra‐low lattice thermal conductivity (0.26 W m−1 K−1), approaching the amorphous limit.
Min Zhang+14 more
wiley +1 more source
Breaking the Capacity Limit for WO3 Anode‐Based Li‐Ion Batteries Using Photo‐Assisted Charging
This image illustrates a photo‐assisted rechargeable lithium‐ion battery. (a) shows the battery structure, where light enhances electron‐hole generation in the anode, boosting ion flow. (b) compares discharging performance, revealing over 60% higher capacity under light compared to dark conditions, showcasing the benefit of light‐assisted energy ...
Rabia Khatoon+7 more
wiley +1 more source
Agglutination of Alkalescens-Dispar type 1 by dyes and heavy metal ions
Kazue Ueno+2 more
openalex +2 more sources
Fractional Skyrmion Tubes in Chiral‐Interfaced 3D Magnetic Nanowires
In chiral 3D helical magnetic nanowires, the coupling between the geometric and magnetic chirality provides a way to create topological spin states like vortex tubes. Here, it is demonstrated how the breaking of this coupling in interfaced 3D nanowires of opposite chirality leads to even more complex topological spin states, such as fractional ...
John Fullerton+11 more
wiley +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source