Results 51 to 60 of about 4,645 (131)

An Ostrowski Type Inequality for Convex Functions [PDF]

open access: yes, 2002
An Ostrowski type integral inequality for convex functions and applications for quadrature rules and integral means are given. A refinement and a counterpart result for Hermite-Hadamard inequalities are obtained and some inequalities for pdf's and (HH ...
Dragomir, Sever Silvestru
core   +2 more sources

Application of (q, τ)‐Bernoulli Interpolation to the Spectral Solution of Quantum Differential Equations

open access: yesInternational Journal of Differential Equations, Volume 2025, Issue 1, 2025.
In order to solve fractional differential equations on quantum domains, this work provides a spectral approach based on higher‐order (q, τ)‐Bernoulli functions and polynomials. We build a robust basis for approximation in (q, τ)‐weighted Hilbert spaces by using the orthogonality properties of these extended polynomials and the Sheffer‐type generating ...
Shaher Momani   +2 more
wiley   +1 more source

Ostrowski type inequalities for harmonically s-convex functions [PDF]

open access: yes, 2013
The author introduces the concept of harmonically s-convex functions and establishes some Ostrowski type inequalities and Hermite-Hadamard type inequality of these classes of functions.Comment: 11 ...
Iscan, Imdat
core  

Estimations of the Disparity Between Hydrogen Ion Concentration and pH in the Context of Caputo–Fabrizio Fractional Integrals via Convexity

open access: yesJournal of Function Spaces, Volume 2025, Issue 1, 2025.
Fractional calculus is unique due to the fact it is as old as regular (integer) calculus, but it has also expanded its applications in a variety of fields and on a diversity of topics over the course of the last century. This leads to a continuous increase in the number of researchers and papers, ranging from integral inequality to biological models ...
Maria Tariq   +5 more
wiley   +1 more source

On n-polynomial p-convex functions and some related inequalities

open access: yesAdvances in Difference Equations, 2020
In this paper, we introduce a new class of convex functions, so-called n-polynomial p-convex functions. We discuss some algebraic properties and present Hermite–Hadamard type inequalities for this generalization.
Choonkil Park   +4 more
doaj   +1 more source

Multiplicative Harmonic P‐Functions With Some Related Inequalities

open access: yesJournal of Function Spaces, Volume 2025, Issue 1, 2025.
This manuscript includes the investigation of the idea of a multiplicative harmonic P‐function and construction of the Hermite–Hadamard inequality for such a sort of functions. We also establish several Hermite–Hadamard type inequalities in the setting of multiplicative calculus.
Serap Özcan   +4 more
wiley   +1 more source

An Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Godunova–Levin Convex and Preinvex Functions via Pseudo and Standard Order Relations

open access: yesJournal of Function Spaces, Volume 2025, Issue 1, 2025.
The connection between generalized convexity and analytic operators is deeply rooted in functional analysis and operator theory. To put the ideas of preinvexity and convexity even closer together, we might state that preinvex functions are extensions of convex functions. Integral inequalities are developed using different types of order relations, each
Zareen A. Khan   +2 more
wiley   +1 more source

Generalization of q‐Integral Inequalities for (α, ℏ − m)‐Convex Functions and Their Refinements

open access: yesJournal of Function Spaces, Volume 2025, Issue 1, 2025.
This article finds q‐ and h‐integral inequalities in implicit form for generalized convex functions. We apply the definition of q − h‐integrals to establish some new unified inequalities for a class of (α, ℏ − m)‐convex functions. Refinements of these inequalities are given by applying a class of strongly (α, ℏ − m)‐convex functions. Several q‐integral
Ria H. Egami   +5 more
wiley   +1 more source

Hermite-Hadamard type inequalities for p-convex functions via fractional integrals

open access: yesMoroccan Journal of Pure and Applied Analysis, 2017
In this paper, we present Hermite-Hadamard inequality for p-convex functions in fractional integral forms. we obtain an integral equality and some Hermite-Hadamard type integral inequalities for p-convex functions in fractional integral forms.
Kunt Mehmet, İşcan İmdat
doaj   +1 more source

Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets

open access: yesMathematics, 2020
In this study, we establish new integral inequalities of the Hermite−Hadamard type for s-convexity via the Katugampola fractional integral. This generalizes the Hadamard fractional integrals and Riemann−Liouville into a single form.
Ohud Almutairi, Adem Kılıçman
doaj   +1 more source

Home - About - Disclaimer - Privacy