Results 21 to 30 of about 32,202 (209)
Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials [PDF]
We prove that every rational extension of the quantum harmonic oscillator that is exactly solvable by polynomials is monodromy free, and therefore can be obtained by applying a finite number of state-deleting Darboux transformations on the harmonic ...
Gomez-Ullate, David +2 more
core +4 more sources
Series Prediction based on Algebraic Approximants [PDF]
It is described how the Hermite-Pad\'e polynomials corresponding to an algebraic approximant for a power series may be used to predict coefficients of the power series that have not been used to compute the Hermite-Pad\'e polynomials.
Homeier, Herbert H. H.
core +4 more sources
A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$
We combine continuous $q^{-1}$-Hermite Askey polynomials with new $2D$ orthogonal polynomials introduced by Ismail and Zhang as $q$-analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer ...
El Moize, Othmane, Mouayn, Zouhaïr
doaj +1 more source
Vortices and Polynomials [PDF]
The relationship between point vortex dynamics and the properties of polynomials with roots at the vortex positions is discussed. Classical polynomials, such as the Hermite polynomials, have roots that describe the equilibria of identical vortices on the
Ablowitz +53 more
core +3 more sources
RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
We consider recurrence relations for the polynomials orthonormal with respect to the Sobolev-type inner product and generated by classical orthogonal polynomials, namely: Jacobi polynomials, Legendre polynomials, Chebyshev polynomials of the first and ...
M. S. Sultanakhmedov
doaj +1 more source
We define the family of truncated Hermite polynomials $P_{n}left(x;zright) $, orthogonal with respect to the linear functional [Lleft[ pright] = int_{-z}^{z} pleft( xright) e^{-x^{2}} ,dx. ] The connection of $P_{n}left( x;zright) $ with the Hermite and Rys polynomials is stated.
Dominici, Diego, Marcellán, Francisco
openaire +3 more sources
Some Integrals Involving q-Laguerre Polynomials and Applications
The integrals involving multivariate q-Laguerre polynomials and then auxiliary ones are studied. In addition, the representations of q-Hermite polynomials by q-Laguerre polynomials and their related integrals are given.
Jian Cao
doaj +1 more source
Determinant Forms, Difference Equations and Zeros of the q-Hermite-Appell Polynomials
The present paper intends to introduce the hybrid form of q-special polynomials, namely q-Hermite-Appell polynomials by means of generating function and series definition.
Subuhi Khan, Tabinda Nahid
doaj +1 more source
On summable, positive Poisson-Mehler kernels built of Al-Salam--Chihara and related polynomials [PDF]
Using special technique of expanding ratio of densities in an infinite series of polynomials orthogonal with respect to one of the densities, we obtain simple, closed forms of certain kernels built of the so called Al-Salam-Chihara (ASC) polynomials.
Bożejko M. +2 more
core +1 more source
q-Hermite Polynomials and Classical Orthogonal Polynomials [PDF]
AbstractWe use generating functions to express orthogonality relations in the form of q-beta. integrals. The integrand of such a q-beta. integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials ...
Berg, Christian, Ismail, Mourad E. H.
openaire +2 more sources

