Results 41 to 50 of about 33,296 (252)
RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
We consider recurrence relations for the polynomials orthonormal with respect to the Sobolev-type inner product and generated by classical orthogonal polynomials, namely: Jacobi polynomials, Legendre polynomials, Chebyshev polynomials of the first and ...
M. S. Sultanakhmedov
doaj +1 more source
Some Integrals Involving q-Laguerre Polynomials and Applications
The integrals involving multivariate q-Laguerre polynomials and then auxiliary ones are studied. In addition, the representations of q-Hermite polynomials by q-Laguerre polynomials and their related integrals are given.
Jian Cao
doaj +1 more source
Determinant Forms, Difference Equations and Zeros of the q-Hermite-Appell Polynomials
The present paper intends to introduce the hybrid form of q-special polynomials, namely q-Hermite-Appell polynomials by means of generating function and series definition.
Subuhi Khan, Tabinda Nahid
doaj +1 more source
Properties of Multivariable Hermite Polynomials in Correlation with Frobenius–Genocchi Polynomials
The evolution of a physical system occurs through a set of variables, and the problems can be treated based on an approach employing multivariable Hermite polynomials.
Shahid Ahmad Wani+3 more
doaj +1 more source
Generating Functions for Products of Special Laguerre 2D and Hermite 2D Polynomials
The bilinear generating function for products of two Laguerre 2D polynomials Lm;n(z; z0) with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials.
Wünsche, Alfred
core +1 more source
In this paper it is proved, that a so-called Hermite transform which transforms \(x^n\), \(n\in\mathbb{N}_0\) into the \(n\)-th Hermite polynomial \(H_n(x)\) preserves the property of a polynomial having only real roots. (In the proof there is referred to a next paragraph, but it does not exist).
openaire +3 more sources
On integrals involving Hermite polynomials
4 ...
M. Quattromini+2 more
openaire +3 more sources
A NEW CHARACTERIZATION OF SYMMETRIC DUNKL AND \(q\)-DUNKL-CLASSICAL ORTHOGONAL POLYNOMIALS
In this paper, we consider the following \(\mathcal{L}\)-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$where \(\Phi\) is a monic polynomial (even), \(\deg\Phi\leq2\), \(\xi_n ...
Yahia Habbachi
doaj +1 more source
Generalized Hermite polynomials
AbstractHermite polynomials of several variables are defined by a generalization of the Rodrigues formula for ordinary Hermite polynomials. Several properties are derived, including the differential equation satisfied by the polynomials and their explicit expression. An application is given.
openaire +3 more sources
Fourier transform of hn(x + p)hn(x − p)
We evaluate Fourier transform of a function with Hermite polynomials involved. An elementary proof is based on a combinatorial formula for Hermite polynomials.
Mourad E. H. Ismail, Krzystztof Stempak
doaj +1 more source