Results 191 to 200 of about 57,985 (299)

Crystal Engineering of Reticular Materials for Gas‐ and Liquid‐Phase Hydrocarbon Separation

open access: yesAdvanced Materials, EarlyView.
Crystal engineering enables systematic study of structure/function relationships as exemplified by pore engineering of reticular sorbents, including porous coordination networks and covalent organic frameworks. This review assesses such studies applied across the full scope of industrially relevant hydrocarbon separations to provide insight into how ...
Xia Li   +2 more
wiley   +1 more source

Unravelling the Secret of Sulfur Confinement and High Sulfur Utilization in Hybrid Sulfur‐Carbons

open access: yesAdvanced Materials, EarlyView.
Thermal condensation of inverse vulcanized sulfur‐carbon hybrids enables a bottom‐up sulfur confinement strategy, in which a protective carbon phase is progressively constructed around sulfur species. The resulting carbon nanodomains covalently tether sulfur chains and stabilize radical intermediates. This integrated architecture effectively suppresses
Tim Horner   +9 more
wiley   +1 more source

COFs on MOFs: Layer‐by‐Layer Synthesis of MOF@COF Nanoparticles with Synergistic Adsorption

open access: yesAdvanced Materials, EarlyView.
A layer‐by‐layer strategy enables the growth of crystalline covalent organic framework (COF) shells on metal–organic framework nanoparticles, creating core–shell structures with tunable porosity. Ordered interstitial mesopores are formed during shell growth, which are connected with the COF's intrinsic micropores, thereby enhancing water sorption. This
Ana Guillem‐Navajas   +11 more
wiley   +1 more source

3D Anodic Alumina Nanoarchitectures: A Decade of Progress from Foundational Science to Functional Metamaterials

open access: yesAdvanced Materials, EarlyView.
Ordered three‐dimensional anodic aluminum oxide (3D‐AAO) nanoarchitectures with longitudinal and transverse pores enable architecture‐driven metamaterials. The review maps fabrication advances, including hybrid pulse anodization, and shows how 3D‐AAO templates tailor properties across magnetism, energy, catalysis, and sensing.
Marisol Martín‐González
wiley   +1 more source

Hydrogel Thermostat Inspired by Photoprotective Foliage Using Latent and Radiative Heat Control

open access: yesAdvanced Materials, EarlyView.
Guided by Populus alba foliage, this hydrogel latent‐radiative thermostat (LRT) actively balances latent and radiative heat fluxes. An LRT switches solar reflectance, maintains high mid‐IR emissivity, and reversibly evaporates/regenerates water, while titanium oxide (TiO2) nanoparticles toughen the film.
Se‐Yeon Heo   +15 more
wiley   +1 more source

Colloid‐Mediated Synthesis of Hierarchically Porous Amorphous Catalyst for Durable Industrial‐Scale Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
A colloid‐mediated electroless plating (CMEP) strategy is proposed to fabricate hierarchically porous, amorphous Fe‐doped NiWB electrocatalysts under ambient conditions. The in situ formation of Fe‐W‐O colloidal species guides the formation of robust, porous catalyst layers with excellent mass transfer and durability, sustaining 500 mA cm−2 for 2000 h,
Yu Liao   +8 more
wiley   +1 more source

Ultralow‐Frequency Epsilon‐Near‐Zero States in 3D‐Printed High‐Entropy Alloy Metacomposites for Ultra‐Thin Perfect RF Absorption

open access: yesAdvanced Materials, EarlyView.
Rozanov causality limit—a compulsive proportional thickness‐wavelength relationship (nd ∝ λ)—makes it challenging to develop perfect absorption with both thin thickness and low frequency. Herein, a cocktail effect in high‐entropy alloys (HEA) is crucially utilized for lowering plasma frequency to achieve epsilon‐near‐zero states, which finally enables ...
Peitao Xie   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy