Results 141 to 150 of about 166,949 (328)
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash +4 more
wiley +1 more source
A vapor‐based porous coating applied within nitinol tubes demonstrated complete suppression of cellular and tissue ingrowth, overcoming a major limitation of implantable interstitial fluid collection devices. Molecular channeling and diffusion are analyzed with probe molecules, showing reliable transport in vitro and in vivo. The coating also achieved >
Yu‐Ming Chang +8 more
wiley +1 more source
In this research, we employed a high-entropy approach in tungsten-bronze-structured ferroelectric ceramics, preparing Sr0.4Ba0.6(Zr0.2Ti0.2Sn0.2Ta0.2Nb0.2)2 (denoted as SBN40-H) ceramics through the traditional solid-state reaction technique.
Yingying Zhao +4 more
doaj +1 more source
High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage
AbstractDielectric ceramic capacitors with ultrahigh power densities are fundamental to modern electrical devices. Nonetheless, the poor energy density confined to the low breakdown strength is a long-standing bottleneck in developing desirable dielectric materials for practical applications.
Haonan Peng +8 more
openaire +3 more sources
A bone substitute with gentamicin physically precipitated onto the surface of carbonate apatite exhibits prompt drug release, high bactericidal activity, and osteogenic capacity. Efficient antibacterial activity mitigates early postoperative neutrophil accumulation, the status of which may serve as a potential parameter for evaluating the antibacterial
Linghao Xiao +6 more
wiley +1 more source
Hybrid Nanofibers for Multimodal Accelerated Wound Healing
Fabrication of wound healing scaffolds based on biocompatible nanofibers. Nanofibers offering high surface area, flexibility, and biocompatibility significantly improved the healing outcome in vivo. Histological, immunological, and anti‐inflammatory markers are noticeably better in treated wounds.
Viraj P. Nirwan +15 more
wiley +1 more source
This review explores the evolving role of microneedle systems in psoriasis management, highlighting their potential for enhanced drug delivery, diagnosis, and disease monitoring. It also discusses unmet clinical needs for psoriasis management and technical challenges, while outlining strategic directions to advance microneedle integration into routine ...
Fatma Moawad +3 more
wiley +1 more source
Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay +3 more
wiley +1 more source
Real‐Time 3D Ultrasound Imaging with an Ultra‐Sparse, Low Power Architecture
This article presents a novel, ultra‐sparse ultrasound architecture that paves the way for wearable real‐time 3D imaging. By integrating a unique convolutional array with chirped data acquisition, the system achieves high‐resolution volumetric scans at a fraction of the power and hardware complexity.
Colin Marcus +9 more
wiley +1 more source
The Y supersaturation in the [Ba‐Cu(I/II)‐O] transient liquid composition is the driving force toward YBCO nucleation and growth in TLAG. Tuning the initial (Ba:Cu) molar ratio in the ink composition determines the YBCO epitaxial nucleation through supersaturation control.
Lavinia Saltarelli +12 more
wiley +1 more source

