Results 151 to 160 of about 1,510,698 (329)
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
This study examines the mechanical properties of triply periodic minimal surfaces (TPMS)‐based lattices, analyzing 36 architectures in elastic and plastic regimes. It evaluates the applicability of beam‐based scaling laws to TPMS lattices. Rigidity arises from the alignment of members with the load direction and solid regions preventing rotation.
Lucía Doyle+2 more
wiley +1 more source
This study demonstrates the feasibility of fabricating free‐standing carbon paper electrodes by electroplating and galvanic replacement. Nanostructured AgM (M = Au, Pt, Pd) bimetallic catalysts are directly grown on the electrode substrate, which exhibit good performance for glycerol electrolysis, a sustainable approach for the co‐production of green ...
Hui Luo, Maria‐Magdalena Titirici
wiley +1 more source
Laser surface texturing significantly improves the corrosion resistance and mechanical strength of 3D‐printed iron polylactic acid (Ir‐PLA) for marine applications. Optimal laser parameters reduce corrosion by 80% and enhance tensile strength by 25% and ductility by 15%.
Mohammad Rezayat+6 more
wiley +1 more source
This article investigates optimal processing conditions for the laser‐based powder bed fusion of WE43. To limit the interaction with remaining oxygen, a 3 vol% hydrogen admixture to the inert gas is investigated. Furthermore, heat treatments are investigated in the range of 250–350 °C for 48 h.
Arvid Abel+9 more
wiley +1 more source
This study explores aerosol jet‐printed (AJP) surface roughness, its effects on the performance of microwave electronics, and its process contributors. First, an electromagnetic model is vetted for AJP's unique roughness signature. Simulations are built which show process‐induced roughness is as significant as conductor resistivity in driving microwave
Christopher Areias, Alkim Akyurtlu
wiley +1 more source
High‐Entropy Ti, Zr, Hf, Ta Multiphase Diboride with Deformation Resistance up to 2000 °C
Ceramics are brittle and strength decreases with temperature. The multiphase high‐entropy (Ti0.25Ta0.25Hf0.25Zr0.25)B2 with heterogeneity at the nano‐ and microscale demonstrates deformation resistance up to 2000 °C, with maximum bending strength at 1800 °C.
Petre Badica+3 more
wiley +1 more source
Direct Consolidation of Copper–Graphene Composite by Rotary Swaging
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich+2 more
wiley +1 more source
The study investigates 3D‐printed polylactic acid (PLA) composites with biodegradable bamboo and jute powder fillers. Mechanical, thermal, structural properties, and rheological behavior are discussed to evaluate composite performance. Morphological characterization indicates uniform dispersion and adhesion of the fillers in the PLA matrix with the ...
Vimukthi Dananjaya+4 more
wiley +1 more source
A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko+2 more
wiley +1 more source