Results 141 to 150 of about 300,011 (303)

Biomimetic Ion‐Orchestrated Hierarchical Armored Hydrogel Coating for Robust and Multifunctional Surface Protection

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by the skin‐toughening mechanism of marine sponges, an ion‐orchestrated structural engineering strategy is proposed to regulate the surface microstructure of hydrogel coatings, enabling the in situ formation of a robust armor layer that enhances mechanical integrity and provides multifunctional protection by suppressing fouling attachment and ...
Wenshuai Yang   +11 more
wiley   +1 more source

Degradation effects in sc-Si PV modules subjected to natural and induced ageing after several years of field operation [PDF]

open access: yes, 2012
This paper presents ageing effects observed in sc-Si PV modules operating in field conditions for 18 and over 22 years. The effects of both natural ageing processes and induced ageing by external agents, causing partial or total shading of cells for a ...
Kaplani, E.
core  

Geometrically‐Screened, Sterically‐Hindered Additive for Wide‐Temperature Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A molecular‑engineering strategy combining steric hindrance tuning with geometric optimization identifies cellobiose as an ideal additive for aqueous zinc‑ion batteries, enabling stable Zn deposition across a wide temperature range from −30 to 50 °C. Abstract Aqueous zinc‐ion batteries (AZIBs) are emerging as a highly promising alternative to lithium ...
Sida Zhang   +13 more
wiley   +1 more source

All‐Aqueous Pullulan Fibers Enabling Visible‐to‐Near‐Infrared Waveguiding with Mechanical and Thermal Resilience

open access: yesAdvanced Functional Materials, EarlyView.
Pullulan, a biomass‐derived polysaccharide, is transformed into transparent optical fibers using a solvent‐free borax hydrogel‐spinning method. The fibers outperform PMMA with ≈200 MPa tensile strength and 200 °C stability, while uniquely guiding visible‐to‐NIR light and enabling additive‐free humidity sensing.
Yuya Fukata   +4 more
wiley   +1 more source

Heteroatom‐Engineering Promoted Co9S8 Bi‐functional Electrocatalyst for Hydrazine‐Assisted Hydrogen Production at Industrial Current Density

open access: yesAdvanced Functional Materials, EarlyView.
Fe and P co‐doped Co9S8 nanocorals (Fe, P‐Co9S8) are successfully synthesized by a heteroatom engineering strategy, which exhibit outstanding bifunctional electrocatalytic performance for both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR).
Yuying Meng   +8 more
wiley   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs [PDF]

open access: yes
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines.
Gokoglu, S. A., Santoro, G. J.
core   +1 more source

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

Fluorine‐Free Soft Nanocomposites for High‐Speed Liquid Impact Repellence

open access: yesAdvanced Functional Materials, EarlyView.
Fluorine‐free soft nanocomposite coatings are developed using silicone oil‐mediated mechanical‐stiffness control, enabling ‘dry’ liquid‐repellent surfaces that resist high‐speed water jet impacts up to ∼60 m/s. By tuning nanoparticle loading and oil content, the coatings also achieve >90% optical transparency, amphiphobicity with impact resistance to ...
Priya Mandal   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy