Results 131 to 140 of about 39,291 (187)
For a certain class of domains, conditions are given which a continuous function on the Silov boundary of a domain must satisfy in order that there exist a holomorphic (pluriharmonic) function in , continuous on and such that . Bibliography: 24 titles.
Lev Aizenberg, Sh. A. Dautov
semanticscholar +5 more sources
Groups of linear isometries of spaces M q of holomorphic functions of several complex variables [PDF]
C n = {z = (z1, z2, . . . , zn) | zk ∈ C, 1 ≤ k ≤ n} be the standard n-dimensional complex coordinate space. ByG we denote the ball Bn = {z ∈ C | |z1| + |z2| + · · ·+ |zn| < 1} or the polydisk U = {z ∈ C | |z1| < 1, . . . , |zn| < 1} in the space Cn, and by Γ we denote the Bergman–Shilov boundary of G: ifG = Bn, then we take Γ = Sn = {z ∈ C | |z1| + · ·
A. V. Subbotin
semanticscholar +3 more sources
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Algebras of symmetric holomorphic functions of several complex variables
Revista Matemática Complutense, 2018Given a proper holomorphic mapping $$g:\varOmega \subseteq {\mathbb {C}}^{n}\longrightarrow \varOmega ' \subseteq {\mathbb {C}}^{n}$$ and an algebra of holomorphic functions
R. Aron +3 more
semanticscholar +4 more sources
Boundary Morera theorems for holomorphic functions of several complex variables
Sei \(D\subset\mathbb{C}^ N\) ein beschränktes Gebiet und \(A(D):=C(\overline D)\cap{\mathcal O}(D)\). In der Arbeit geht es um die Frage, wann eine Funktion \(f\in C(\partial D)\) nach \(D\) holomorph fortsetzbar, d.h. Beschränkung einer Funktion aus \(A(D)\) ist. Eine notwendige und unter geeigneten Voraussetzungen auch hinreichende Bedingung ist die
J. Globevnik, E. L. Stout
semanticscholar +4 more sources
On holomorphic operator-functions of several complex variables
S. G. Kreĭn, V. P. Trofimov
openalex +4 more sources
Boundary behavior of holomorphic functions of several complex variables
Mathematical Notes of the Academy of Sciences of the USSR, 1986The author generalizes for strictly pseudoconvex domains \(D\subset {\mathbb{C}}^ n\), \textit{W. Seidel}'s [Trans. Am. Math. Soc. 34, 1-21 (1932)] criterium of equality of the limit of two sequences of values \(f(a_ m)\), \(f(b_ m)\) \((m=1,2,...)\) of a bounded holomorphic function f defined on the unit disc \(U\subset {\mathbb{C}}\), when the ...
P. V. Dovbush
semanticscholar +5 more sources
The Riemann-Hilbert boundary-value problem for holomorphic functions of several complex variables
М. А. Бородин
openalex +3 more sources
The convergence of Pade´-type approximants to holomorphic functions of several complex variables
Applied Numerical Mathematics, 1990The author proves two generalizations of \textit{M. Eiermann's} [J. Comput. Appl. Math. 10, 219-227 (1984; Zbl 0538.65011)] sufficient condition for linear summability of power series, one where the summation method is applied to partial sums of the multidimensional power series and one where different summation matrices are used in different variables.
N. Daras
semanticscholar +3 more sources

