Results 51 to 60 of about 10,534 (236)
Protected Chaos in a Topological Lattice
Topological and chaotic dynamics are often considered incompatible, with one expected to dominate or disrupt the other. This work reveals that topological localization can persist even under strong chaotic dynamics and, counter‐intuitively, protect chaotic behavior.
Haydar Sahin +6 more
wiley +1 more source
Exploring the Influence of Oblateness on Asymptotic Orbits in the Hill Three-Body Problem
We examine the modified Hill three-body problem by incorporating the oblateness of the primary body and focus on its asymptotic orbits. Specifically, we analyze and characterize homoclinic and heteroclinic connections associated with the collinear ...
Vassilis S. Kalantonis
doaj +1 more source
Bifurcations of Nontwisted Heteroclinic Loop with Resonant Eigenvalues
By using the foundational solutions of the linear variational equation of the unperturbed system along the heteroclinic orbits to establish the local coordinate systems in the small tubular neighborhoods of the heteroclinic orbits, we study the ...
Yinlai Jin +5 more
doaj +1 more source
Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators
We study the dynamics of a pair of parametrically-driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical and nanoelectromechanical systems (MEMS & NEMS). We take advantage
A. Cleland +7 more
core +1 more source
Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics [PDF]
In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem.
Koon, Wang Sang +3 more
core +3 more sources
Numerical Simulation of Mixing Enhancement in a Single Screw Extruder by Different Internal Baffles
Three rows of plate baffles and plow‐shaped baffles are employed to introduce chaos into the flow channel of a single screw extruder. Mixing is numerically characterized in terms of the evolution of tracer particles, Poincaré sections, shear rates, mixing index, distribution probability function of mixing index, and their integral functions.
Huiwen Yu +4 more
wiley +1 more source
Existence and multiplicity results for homoclinic orbits of Hamiltonian systems
Homoclinic orbits play an important role in the study of qualitative behavior of dynamical systems. Such kinds of orbits have been studied since the time of Poincare.
Chao-Nien Chen, Shyuh-Yaur Tzeng
doaj
Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial
A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor.
Abad A. +19 more
core +1 more source
ABSTRACT This work aims to study some dynamical aspects of the nonlinear logarithmic Schrödinger equation (NLS‐log) on a tadpole graph, namely, a graph consisting of a circle with a half‐line attached at a single vertex. By considering Neumann–Kirchhoff boundary conditions at the junction, we show the existence and the orbital stability of standing ...
Jaime Angulo Pava +1 more
wiley +1 more source
Global orbit of a complicated nonlinear system with the global dynamic frequency method
Global orbits connect the saddle points in an infinite period through the homoclinic and heteroclinic types of manifolds. Different from the periodic movement analysis, it requires special strategies to obtain expression of the orbit and detect the ...
Zhixia Wang +3 more
doaj +1 more source

