Results 81 to 90 of about 592,649 (316)

On homogeneous Hermite–Lorentz spaces [PDF]

open access: yesAsian Journal of Mathematics, 2016
We define naturally Hermite-Lorentz metrics on almost-complex manifolds as special case of pseudo-Riemannian metrics compatible with the almost complex structure. We study their isometry groups.
Ben-Ahmed, Ali, Zeghib, Abdelghani
openaire   +5 more sources

Comparative single‐cell transcriptomic profiling of patient‐derived renal carcinoma cells in cellular and animal models of kidney cancer

open access: yesFEBS Open Bio, EarlyView.
We generated and characterized clear cell renal cell carcinoma models using the patient‐derived RCC243 cell line—including cell culture, orthotopic, and metastatic tumors—via single‐cell RNA‐sequencing for comparisons between models and patient tumor datasets.
Richard Huang   +9 more
wiley   +1 more source

Symmetries of holomorphic geometric structures on tori

open access: yesComplex Manifolds, 2016
We prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension.
Dumitrescu Sorin, McKay Benjamin
doaj   +1 more source

Homogeneous mixed Herz-Morrey spaces and its Applications [PDF]

open access: yesarXiv, 2022
In this paper, we introduce homogeneous mixed Herz-Morrey spaces $M\dot{K}_{p,\vec{q}}^{\alpha,\lambda}(\mathbb{R}^n)$ and show it's some properties. Firstly, the boundedness of sublinear operators, fractional type operators in homogeneous mixed Herz-Morrey spaces is investigated.
arxiv  

Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative [PDF]

open access: yesSIGMA 11 (2015), 069, 12 pages, 2014
Our purpose is to use a Darboux homogenous derivative to understand the harmonic maps with values in homogeneous space. We present a characterization of these harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all type of invariant geometry in homogeneous space.
arxiv   +1 more source

On the Volume in Homogeneous Spaces [PDF]

open access: yesNagoya Mathematical Journal, 1959
Guldin-Pappus’s theorem about the volume of a solid of rotation in the euclidean space has been generalized in two ways. G. Koenigs [1] and J. Hadamard [2] proved that the volume generated by a 1-parametric motion of a surface D bounded by a closed curve c is equal to where are quantities attached to D with respect to a rectangular coordinate system ...
openaire   +2 more sources

K-theory for the C*-algebras of continuous functions on certain homogeneous spaces in semi-simple Lie groups</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>Cubo</i>, 2012 </span><br><span class="r_content">Estudiamos la K-teoría para las álgebras de todas las funciones continuas sobre ciertos espacios homogeneos, principalmente en los grupos de Lie conexos semi- simples y subgrupos discretos .</span><br><span class="r_sub"><i>Takahiro Sudo</i></span><br><small><a href="https://doaj.org/article/a7c1bca6d1a44bebada9d87f830ff88a" target="_blank" rel="nofollow" title="doaj.org/article/a7c1bca6d1a44bebada9d87f830ff88a">doaj</a> </small>   <br></div><div class="r"><p class="r_title"><a href="http://arxiv.org/abs/2310.20359v1" target="_blank" rel="nofollow">Homogeneous continuous images of smaller weight</a> <b><a href="http://arxiv.org/pdf/2310.20359v1" target="_blank" rel="nofollow">[PDF]</a></b> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>arXiv</i>, 2023 </span><br><span class="r_content">We show that every infinite crowded space can be mapped onto a homogeneous space of countable weight, and that there is a homogeneous space of weight continuum that cannot be mapped onto a homogeneous space of uncountable weight strictly less than continuum.</span><br><small><a href="http://arxiv.org/abs/2310.20359v1" target="_blank" rel="nofollow" title="arxiv.org/abs/2310.20359v1">arxiv</a> </small>   <br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1016/j.geomphys.2005.08.002" target="_blank" rel="nofollow">Penrose limits of homogeneous spaces</a> <b><a href="http://arxiv.org/pdf/math/0405506v2" target="_blank" rel="nofollow">[PDF]</a></b> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>J.Geom.Phys. 56 (2006) 1516-1533</i>, 2004 </span><br><span class="r_content">We prove that the Penrose limit of a spacetime along a homogeneous geodesic is a homogeneous plane wave spacetime and that the Penrose limit of a reductive homogeneous spacetime along a homogeneous geodesic is a Cahen--Wallach space. We then consider several homogenous examples to show that these results are indeed sharp and conclude with a remark ...</span><br><small><a href="http://arxiv.org/abs/math/0405506v2" target="_blank" rel="nofollow" title="arxiv.org/abs/math/0405506v2">arxiv</a> </small>   <div id="more_9" style="display:none"><a href="/sci_redir.php?doi=10.1016%2Fj.geomphys.2005.08.002" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1016/j.geomphys.2005.08.002'); alert('Copied the doi');">copy doi</a> <small>(10.1016/j.geomphys.2005.08.002)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_9')">+1 more source</a></small><br></div><div class="r"><p class="r_title"><a href="https://doi.org/10.1140/epjc/s10052-019-6939-5" target="_blank" rel="nofollow">Spinning particle interacting with electromagnetic and antisymmetric gauge fields in anti-de Sitter space</a> </p><span class="r_subtitle"><img src="/img/openaccess.ico" alt="open access: yes" title="open access: yes" width="16" height="16"><i>European Physical Journal C: Particles and Fields</i>, 2019 </span><br><span class="r_content">Massless spinning particle model that interacts with electromagnetic and antisymmetric gauge fields in anti-de Sitter space-time is considered as a constrained Hamiltonian system.</span><br><span class="r_sub"><i>D. V. Uvarov</i></span><br><small><a href="https://doaj.org/article/fb4c6abd709d49b8b9456ac42255f9bf" target="_blank" rel="nofollow" title="doaj.org/article/fb4c6abd709d49b8b9456ac42255f9bf">doaj</a> </small>   <div id="more_10" style="display:none"><a href="/sci_redir.php?doi=10.1140%2Fepjc%2Fs10052-019-6939-5" target="_blank" rel="nofollow">openaccessbutton.org (pdf)</a><br><a href="javascript:navigator.clipboard.writeText('10.1140/epjc/s10052-019-6939-5'); alert('Copied the doi');">copy doi</a> <small>(10.1140/epjc/s10052-019-6939-5)</small><br></div><small><a href="#" onClick="return toggle_div(this, 'more_10')">+1 more source</a></small><br></div><div class="r"><div style="margin-bottom:2px;overflow:hidden"><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-fos%3A_mathematics/" class="suggestion"onclick="show_loader();"><b>fos: mathematics</b></a><br/><a href="/q-geometry/" class="suggestion"onclick="show_loader();"><b>geometry</b></a><br/><a href="/q-computer_science/" class="suggestion"onclick="show_loader();"><b>computer science</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-space_punctuation/" class="suggestion"onclick="show_loader();"><b>space punctuation</b></a><br/><a href="/q-algebra_over_a_field/" class="suggestion"onclick="show_loader();"><b>algebra over a field</b></a><br/><a href="/q-lie_group/" class="suggestion"onclick="show_loader();"><b>lie group</b></a><br/></div><div style="display: inline-block; float: left; font-size: small; padding-right: 16px; margin-top: -1px; padding-bottom: 1px;"><a href="/q-physics/" class="suggestion"onclick="show_loader();"><b>physics</b></a><br/><a href="/q-philosophy/" class="suggestion"onclick="show_loader();"><b>philosophy</b></a><br/><a href="/q-mathematics_-_representation_theory/" class="suggestion"onclick="show_loader();"><b>mathematics - representation theory</b></a><br/></div></div></div><div class="pagenav"><a href="/q-homogeneous_space/p-8/" rel="nofollow"><b>previous</b></a>   <a href="/q-homogeneous_space/p-7/" rel="nofollow">7</a>  <a href="/q-homogeneous_space/p-8/" rel="nofollow">8</a>  <b>9</b>  <a href="/q-homogeneous_space/p-10/" rel="nofollow">10</a>  <a href="/q-homogeneous_space/p-11/" rel="nofollow">11</a>   <a href="/q-homogeneous_space/p-10/" id="next" rel="nofollow"><b>next</b></a> </div><br></div> </div> <script>document.getElementById('loadingGif').style.display='none';</script><div style="width: 100%; height: 40px; bottom: 0px; background-color: #f5f5f5;"><div style="padding-left: 15px; padding-top: 10px"> <a href="/" rel="nofollow">Home</a> - <a href="/page-about/" rel="nofollow">About</a> - <a href="/page-disclaimer/" rel="nofollow">Disclaimer</a> - <a href="/page-privacy/" rel="nofollow">Privacy</a> </div></div> <link rel="stylesheet" href="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/themes/smoothness/jquery-ui.min.css"/> </body> </html>