Results 101 to 110 of about 152,483 (296)
2-local triple homomorphisms on von Neumann algebras and JBW$^*$-triples [PDF]
We prove that every (not necessarily linear nor continuous) 2-local triple homomorphism from a JBW$^*$-triple into a JB$^*$-triple is linear and a triple homomorphism.
Antonio +4 more
core
Multiplicity results for logarithmic double phase problems via Morse theory
Abstract In this paper, we study elliptic equations of the form −divL(u)=f(x,u)inΩ,u=0on∂Ω,$$\begin{align*} -\operatorname{div}\mathcal {L}(u)=f(x,u)\quad \text{in }\Omega, \quad u=0 \quad \text{on } \partial \Omega, \end{align*}$$where divL$\operatorname{div}\mathcal {L}$ is the logarithmic double phase operator given by div|∇u|p−2∇u+μ(x)|∇u|q(e+|∇u ...
Vicenţiu D. Rădulescu +2 more
wiley +1 more source
These notes in this paper will discuss about C*-algebras commutative and its properties. The theory of algebra-*, Banach-* algebra, C*-algebras and *-homomorphism are included. We also give some examples of commutative C*-algebras.
Harmanus Batkunde
doaj +1 more source
Chebotarev's theorem for cyclic groups of order pq$pq$ and an uncertainty principle
Abstract Let p$p$ be a prime number and ζp$\zeta _p$ a primitive p$p$th root of unity. Chebotarev's theorem states that every square submatrix of the p×p$p \times p$ matrix (ζpij)i,j=0p−1$(\zeta _p^{ij})_{i,j=0}^{p-1}$ is nonsingular. In this paper, we prove the same for principal submatrices of (ζnij)i,j=0n−1$(\zeta _n^{ij})_{i,j=0}^{n-1}$, when n=pr ...
Maria Loukaki
wiley +1 more source
Torelli groups are subgroups of mapping class groups that consist of those diffeomorphism classes that act trivially on the homology of the associated closed surface. The Johnson homomorphism, defined by Dennis Johnson, and its generalization, defined by S. Morita, are tools for understanding Torelli groups.
openaire +2 more sources
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source
Degree-Constrained Steiner Problem in Graphs with Capacity Constraints
The degree-constrained Steiner problem in graphs is well known in the literature. In an undirected graph, positive integer degree bounds are associated with nodes and positive costs with the edges.
Miklos Molnar
doaj +1 more source
Let R be a commutative reduced ring. A ring homomorphism \(f: R\to S\) is called exoteric, if the following condition holds: If two finitely generated ideals of R have the same annihilator in R, then their images under f have the same annihilator in S. An ideal of R is exoteric, if it is the kernel of an exoteric homomorphism.
openaire +2 more sources
The log Grothendieck ring of varieties
Abstract We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “P$P$” over the usual Grothendieck ring. We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.
Andreas Gross +4 more
wiley +1 more source
A categorical interpretation of continuous orbit equivalence for partial dynamical systems
Abstract We define the orbit morphism of partial dynamical systems and prove that an orbit morphism being an isomorphism in the category of partial dynamical systems and orbit morphisms is equivalent to the existence of a continuous orbit equivalence between the given partial dynamical systems that preserves the essential stabilisers. We show that this
Gilles G. de Castro, Eun Ji Kang
wiley +1 more source

