Results 71 to 80 of about 1,060 (227)
On central automorphisms of crossed modules
A crossed module $(T,G,\partial)$ consist of a group homomorphism $\partial:T\rightarrow G$ together with an action $(g,t)\rightarrow{}^{\,g}t$ of $G$ on $T$ satisfying $\partial(^{\,g}t)=g\partial(t)g^{-1}$ and $\,^{\partial(s)}t=sts^{-1}$, for all $g ...
M. Dehghani, B. Davvaz
doaj +1 more source
ABSTRACT High‐level decision‐making for dynamical systems often involves performance and safety specifications that are activated or deactivated depending on conditions related to the system state and commands. Such decision‐making problems can be naturally formulated as optimization problems where these conditional activations are regulated by ...
Andrea Ghezzi +4 more
wiley +1 more source
Posets arising from decompositions of objects in a monoidal category
Given a symmetric monoidal category ${\mathcal C}$ with product $\sqcup $ , where the neutral element for the product is an initial object, we consider the poset of $\sqcup $ -complemented subobjects of a given object X.
Kevin Ivan Piterman, Volkmar Welker
doaj +1 more source
ABSTRACT Unarguably, malware and their variants have metamorphosed into objects of attack and cyber warfare. These issues have directed research focus to modeling infrastructural settings and infection scenarios, analyzing propagation mechanisms, and conducting studies that highlight optimized remedial measures.
Chukwunonso Henry Nwokoye
wiley +1 more source
Large‐Amplitude Periodic Solutions to the Steady Euler Equations With Piecewise Constant Vorticity
ABSTRACT We consider steady solutions to the incompressible Euler equations in a two‐dimensional channel with rigid walls. The flow consists of two periodic layers of constant vorticity separated by an unknown interface. Using global bifurcation theory, we rigorously construct curves of solutions that terminate either with stagnation on the interface ...
Alex Doak +3 more
wiley +1 more source
Scissors congruence K$K$‐theory for equivariant manifolds
Abstract We introduce a scissors congruence K$K$‐theory spectrum that lifts the equivariant scissors congruence groups for compact G$G$‐manifolds with boundary, and we show that on π0$\pi _0$, this is the source of a spectrum‐level lift of the Burnside ring‐valued equivariant Euler characteristic of a compact G$G$‐manifold.
Mona Merling +4 more
wiley +1 more source
Residually rationally solvable one‐relator groups
Abstract We show that the intersection of the rational derived series of a one‐relator group is rationally perfect and is normally generated by a single element. As a corollary, we characterise precisely when a one‐relator group is residually rationally solvable.
Marco Linton
wiley +1 more source
Simple groups with strong fixed‐point properties
Abstract We exhibit finitely generated torsion‐free groups for which any action on any finite‐dimensional CW‐complex with finite Betti numbers has a global fixed point.
Nansen Petrosyan
wiley +1 more source
Torsion classes of extended Dynkin quivers over commutative rings
Abstract For a Noetherian R$R$‐algebra Λ$\Lambda$, there is a canonical inclusion torsΛ→∏p∈SpecRtors(κ(p)Λ)$\mathop {\mathsf {tors}}\Lambda \rightarrow \prod _{\mathfrak {p}\in \operatorname{Spec}R}\mathop {\mathsf {tors}}(\kappa (\mathfrak {p})\Lambda)$, and each element in the image satisfies a certain compatibility condition.
Osamu Iyama, Yuta Kimura
wiley +1 more source

