Results 61 to 70 of about 41,540 (204)
Half-commutative orthogonal Hopf algebras [PDF]
A half-commutative orthogonal Hopf algebra is a Hopf *-algebra generated by the self-adjoint coefficients of an orthogonal matrix corepresentation $v=(v_{ij})$ that half commute in the sense that $abc=cba$ for any $a,b,c \in \{v_{ij}\}$.
Bichon, Julien, Dubois-Violette, Michel
core +3 more sources
ABSTRACT Unarguably, malware and their variants have metamorphosed into objects of attack and cyber warfare. These issues have directed research focus to modeling infrastructural settings and infection scenarios, analyzing propagation mechanisms, and conducting studies that highlight optimized remedial measures.
Chukwunonso Henry Nwokoye
wiley +1 more source
Large‐Amplitude Periodic Solutions to the Steady Euler Equations With Piecewise Constant Vorticity
ABSTRACT We consider steady solutions to the incompressible Euler equations in a two‐dimensional channel with rigid walls. The flow consists of two periodic layers of constant vorticity separated by an unknown interface. Using global bifurcation theory, we rigorously construct curves of solutions that terminate either with stagnation on the interface ...
Alex Doak +3 more
wiley +1 more source
On the coherent Hopf 2-algebras
We construct a coherent Hopf 2-algebra as quantization of a coherent 2-group, which consists of two Hopf coquasigroups and a coassociator. For this constructive method, if we replace Hopf coquasigroups by Hopf algebras, we can construct a strict Hoft 2 ...
Han, Xiao
core
Module structure of Weyl algebras
Abstract The seminal paper (Stafford, J. Lond. Math. Soc. (2) 18 (1978), no. 3, 429–442) was a major step forward in our understanding of Weyl algebras. Beginning with Serre's Theorem on free summands of projective modules and Bass' Stable Range Theorem in commutative algebra, we attempt to trace the origins of this work and explain how it led to ...
Gwyn Bellamy
wiley +1 more source
A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations
We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras.
Senlin Zhang, Shuanhong Wang
doaj +1 more source
Siegel–Veech constants for cyclic covers of generic translation surfaces
Abstract We compute the asymptotic number of cylinders, weighted by their area to any nonnegative power, on any cyclic branched cover of any generic translation surface in any stratum. Our formulae depend only on topological invariants of the cover and number‐theoretic properties of the degree: in particular, the ratio of the related Siegel–Veech ...
David Aulicino +4 more
wiley +1 more source
The hybrid approach to Quantum Supervised Machine Learning is compatible with Noisy Intermediate Scale Quantum (NISQ) devices but hardly useful. Pure quantum kernels requiring fault‐tolerant quantum computers are more promising. Examples are kernels computed by means of the Quantum Fourier Transform (QFT) and kernels defined via the calculation of ...
Massimiliano Incudini +2 more
wiley +1 more source
On lattice models of gapped phases with fusion category symmetries
We construct topological quantum field theories (TQFTs) and commuting projector Hamiltonians for any 1+1d gapped phases with non-anomalous fusion category symmetries, i.e. finite symmetries that admit SPT phases.
Kansei Inamura
doaj +1 more source
From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity
We show that the partition function of the logarithmic sector of critical topologically massive gravity which represents a series expansion of composition of functions, can be expressed as a sum over rooted trees.
Yannick Mvondo-She
doaj +1 more source

