Results 241 to 250 of about 203,161 (272)
Some of the next articles are maybe not open access.
2011
Jusqu’a present, nous avons etudie des bifurcations stationnaires correspondant a des changements de solutions stationnaires. Ce chapitre decrit quelques exemples de systemes non lineaires presentant des bifurcations de Hopf, du nom de l’astronome mathematicien autrichien Eberhard Frederich Ferdinand Hopf (1902–1983), caracteristiques d’une transition ...
openaire +2 more sources
Jusqu’a present, nous avons etudie des bifurcations stationnaires correspondant a des changements de solutions stationnaires. Ce chapitre decrit quelques exemples de systemes non lineaires presentant des bifurcations de Hopf, du nom de l’astronome mathematicien autrichien Eberhard Frederich Ferdinand Hopf (1902–1983), caracteristiques d’une transition ...
openaire +2 more sources
2014
In this chapter we study a bifurcation characterized by a zero eigenvalue and a pair of nonzero purely imaginary eigenvalues of the linearization transverse to a plane of equilibria. It turns out that instead we can study a one-parameter family of lines in a system depending on one parameter.
openaire +2 more sources
In this chapter we study a bifurcation characterized by a zero eigenvalue and a pair of nonzero purely imaginary eigenvalues of the linearization transverse to a plane of equilibria. It turns out that instead we can study a one-parameter family of lines in a system depending on one parameter.
openaire +2 more sources
2014
The final bifurcation of codimension 2 is characterized by the intersection of 2 curves of Poincare-Andronov-Hopf points on a two-dimensional surface of equilibria. As we shall see, the drift direction at the Hopf lines play an important role. In the case of a parameter-dependent fixed line of equilibria, drifts at both Hopf-lines can be opposite and ...
openaire +2 more sources
The final bifurcation of codimension 2 is characterized by the intersection of 2 curves of Poincare-Andronov-Hopf points on a two-dimensional surface of equilibria. As we shall see, the drift direction at the Hopf lines play an important role. In the case of a parameter-dependent fixed line of equilibria, drifts at both Hopf-lines can be opposite and ...
openaire +2 more sources
Journal of Applied Mathematics and Computation, 2018
Xin-You Meng +2 more
semanticscholar +1 more source
Xin-You Meng +2 more
semanticscholar +1 more source
On Hopf bifurcation and control for a delay systems
Applied Mathematics and Computation, 2019Xiaowei Jiang +3 more
semanticscholar +1 more source

