Results 221 to 230 of about 383,093 (287)

The Mitochondrial Guardian α‐Amyrin Mitigates Alzheimer's Disease Pathology via Modulation of the DLK‐SARM1‐ULK1 Axis

open access: yesAdvanced Science, EarlyView.
Dietary habits play a key role in chronic diseases, and higher annual consumption of fruit and vegetable may lower risk of dementia. Artificial intelligence predicts the lipid‐like compound α‐Amyrin (αA) from plants with edible peels as a drug candidate against Alzheimer's disease.
Shu‐Qin Cao   +36 more
wiley   +1 more source

PTG‐Dependent Glycogen Metabolic Dysfunction Drives Impaired Adipose Browning: A Novel Mechanism Linking PM2.5 to Metabolic Disorders

open access: yesAdvanced Science, EarlyView.
This study provides the first evidence that PM2.5 impairs iWAT browning via PTG‐mediated glycogen metabolism disruption, which is initiated by ADRB3 inhibition and subsequently triggers VEGFB upregulation. It thereby delineates the ADRB3‐PTG‐VEGFB axis as central to PM2.5‐induced metabolic dysfunction and identifies adipose glycogen metabolism as a ...
Limin Wang   +12 more
wiley   +1 more source

CLinNET: An Interpretable and Uncertainty‐Aware Deep Learning Framework for Multi‐Modal Clinical Genomics

open access: yesAdvanced Science, EarlyView.
Identifying disease‐causing genes in neurocognitive disorders remains challenging due to variants of uncertain significance. CLinNET employs dual‐branch neural networks integrating Reactome pathways and Gene Ontology terms to provide pathway‐level interpretability of genomic alterations.
Ivan Bakhshayeshi   +5 more
wiley   +1 more source

The Gut Microbiota Regulates Motor Deficits via Butyrate in a Gnal+/− Mouse Model of DYT25 Dystonia

open access: yesAdvanced Science, EarlyView.
The present study provides compelling evidence for a modulatory role of the gut microbiota in the pathology of DYT25 dystonia, and butyrate supplementation alleviates the motor deficits of dystonia in Gnal+/− mice. Abstract Dystonia is the third most common movement disorder, following essential tremor and Parkinson's disease. The underlying mechanisms
Jingya Guo   +3 more
wiley   +1 more source

Stress‐Programmed Immune Niches Fuel TNFR2+ Treg Activation and Drive Neoadjuvant Chemotherapy Resistance in Breast Cancer

open access: yesAdvanced Science, EarlyView.
Single‐cell sequencing reveals stress‐programmed immune states driving TNFα–TNFR2–mediated Treg activation and therapy resistance in breast cancer, while targeting this axis restores antitumor immunity. ABSTRACT The tumor microenvironment (TME) harbors diverse immune cell states that shape therapeutic outcomes in breast cancer.
Zhibo Shao   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy